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1-1. Introduction

3

SUPPLEMENTARY UNIT 1°
"SETS

- .
You already aré familiar ‘with the word "set." A set of dishes

© is a collection of dishes. A setvof domindes is a collection, or

group, of dominoes. In mathematics we use the word "set" to speak
about any collection of any kind of thing. i In your classroom
there is a set of persons. There is also a set of noses in the
rodm, .

4 The language of setsris‘very useful in describing -all sorts of
situations..  How is the set of pupils in your class related to the
set of boys in the class? Compare the number in each of the follo

ing three sets: _ ‘ . . N ﬁ%ﬁkﬁ ,F
"the set of pupils in your .class, A7 -i
the set of boys in your class, and _
the set of girls in your class. u/’&

The.following three sets are related in a different way:

the/set of redheads,
the\set of baboons, and
" the set of redheaded baboons.

In this chapter we are going to study relations between sets,

"and ways in which we can combine sets to obtain new ones. We shall

find it convenient to invent some new words and symbols.

1-2. Sets, Their Members ancd Their Subsets

Sets and Their Members

When we speak of a set as a collection of things, we do not
mean that the things are all together in one place or time. The
set’ of all living women is a widely distributed set. You wil®

:
|
|
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¥.  meet members of this set,all over the world. The set of all
- presidents of the United States has as members George WashingtOn
and Dwight D Eisenhower, among others. Name- other mempers of this
.. set. . S i n; R R
The "things" may not be obJects which you c¢an touch or see,
The set of all Beetnoven symphoniés does not centain any concrete ‘
objects. .You may have heard some of 1ts membérs _ They set of allﬂ._
~ School orchestras- 1n the United States 1s“4 set Mhose{members are °
themselves sets of pﬁplls. The set of classes in your school is-
another set whose memberd’are sets. M is different from the-set
of all students in classes in your school. Uhich of these setSf .
s more .members: The set cf Students in your school ur the set
'ikﬁf‘ciasses in-your school? *~ - ', ‘ ‘ . -t
- Sometimes we define a sét by listing its members, Your teather
~might -appoint a committee to be 1n charge of the mathematical: ex-
-" hibits ir your class. She may say, "The members of the Exhibits
" Committee shall be Lenore, Muriel, Dick and Al." N
We often name a set which is defined‘in thils way by listing

names of 1ts members and enclosing fhem in braces

-

Exhibits Committee = {Lenore, Muriel, Dick, Al}.

We sometimes cal. the members of a set "elements of the set."
You are an element of the set of mathematics students.

We use the symbol "¢" (Greek letjer epsilon) to mean "is a
member of." Thus we can express the fact that Lenore is on the

committee by writing )
Lenore € Exhibits Committee.

We could state the definition of the committee like this: |
X € Exhibits Committee if and only if x represents
Lenore or x represents Muriel or x represents Dick
or X represents Al.
Another way to describe a set is to state the membership re-
~quirements. These are conditions that something must satisfy in
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order to be in the set. The set of persons in your classroom has

avery simple membership requirement. The. object x is in the S
set. 1f; x is a person in your classroom, and only tnen - The set

.of common multiples of 4 and 6 1is the set of all numbers. X,

for which it is true that. x 1s a multiple of ¥4, and x 1sa’
mnlt;ple of 6. You might imagine’ each object in the universe
applying fqor membership in thils set. If the object is not .even

a whole number, then we throw it out immediately. If it is a
whole humber, we divide it by 4. If the remalnder.is zero, we
then divide the number by 6 and see whether 6 1s a factor.

If X passes thiggtest, too, then x gets its membership card in
the set. If it faills any of the tests. we reJect it.

Prgpertx
You begin to see that for a particular set to be clearly defined

 there must be some scheme or devige for determining whether or
- not a given element is 1in the set. Usually-a set 1is described in

terms of some property, or properties, which 1ts elements have in
oommon. For example, the set. C may be thought of as the pupils
in your 1lass. The common property is that each element is a
member of your class. Agaln, you may consider set B as the set
of boys in your class. The elements of this set contain two /
properties in common: . (1)..the elements are all in your class, /v
and (2) ' the elements are all boys. Sometimes a set is described . :
simply by enumerating the elements. M

We could say the Eet, Lenore, Muriel, Dick and Al. This would
form a set even if they were not on the .same committee. We can

describe a large.set by listing a few members if it can be done so

' that there 1s no doubt as to whether or not an object is in the set.

0,1, 2, 3, ... 100 describes the set of whole numbers from O
through 100. Some sets with a limitless number of elements can

be described by listing a few elements; in this case, also, there
must be no doubt as to- -whether or not an object is in the set. An ‘
example of a limitless set 1s: O, 2, 4, 6 ... 2n ... . What

are the common properties of this set?
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Exercises‘l—E-a

List a common property or properties of the elements-of each
.of the following sets:

t
(a) ({Sue, Jane, Dorothy, Mildred]}.
() {Washington, -Jackson, Eisenhawer}. ' <

KC) {l, 35 5: 7: 9, 11}-
(a) . {12, 24, 36, u48}. -

Translate the following mathematical sentenceswinto English.

&

N w (a) Tom € [Cafl, Jim, Tom, Robert}.
(b) ’6 € {o: 2: 4, 6) 8: 10, .,.}.

(¢) 1If X € {Tom, Carl, Bob, Jim} then X represents

Tom, or X ‘pepresents Carl, or X represents Bob,.or
L X- represents Jim. - '

. . A .
\y 3. Which of the following are true?
\ (a) 4 € {3, 7,.10, u}. _ y
\ (bYy 1lion € {buboon, tiger, dog, lion}. . o

(¢) If X is a multiple of .6, then X € (8, 14, 17, 28].
| (d) If X is a counting number, then X €. ({1, 2, 3, 4, 5;
1 6, ...}, ’ -

13 ' 9" M
; - {e) Washington, D. C. € (Alabama, Alaska, Arizona, ..., West

Virginia, Wisconsin, Wyoming].
4, List the members of the following sets:
(a) The set of X such that X is a factor of 12

(b) The set of X such that X plays a violin, or X .plays
the viola, or X plays the cello. '

“and 30.

)

(c) The seét of X such that X is a whole number. )

(d) The set of X such that X 1s one of the U. S. Presi-
dents since 1930.
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.Subsets A '

Considern the set of maJor 1eague baseball teams in New York -
in 195%9. This set has one membder, the New York Yankees Baseba;l )
Club. 1Its one member is itself a set, among whose members are
Mickey Mantle and Yogl Berra. The set ‘whose onlJ member is a
certain object is not the same as that object. The symbol (3]
is a name for the set whose only member is’ 3. ‘ o

' The set of players on the New York Yankees team is a subset
of the set of basebsil‘players. Every member of the team is a
baseball player. In symbols, we write: If X € _ Yankees, then
X € the set of baseball players. .

. You have been introduced to-.a new word: that of\ sgpset.‘

us consider another example. Suppose in a class of 25 pupils

there are 3 pupils whose first name begins with "S." You can
then’say that these 3 pupils form a subset of the class\o Again,
consider the set of” even counting numbers: 2, o, 6 8, 10, ... ) .
This set can be considered as a subset of the counting numbers:
12,0,4 5, 6, T ,

Suppose the set of pupils in your class whose first names
begin with "S" is ({Sam, -Susan, Sally) Subsets of this
set may be listed as follows: {Sam}, Léusan], {Sally}, {Sam,
Susan]j, fSam, Sally), {Susan, Sally} and {Sam, Susan, S ally}
Sometimes we say that a set is a subseE of itself.

T

AT

U map A

3,4;;«.!?# R Ry e

e e T

v

A Definition: , , “

3 i A set R 1s a subseft of a set S 1if every element of R 1is

4

P, an. element of S.

¢

It i's necessary, at times, to talk about the relationship—of
a set, or the relationship of a set to another set., 'We say, for
example, that the set of even counting numbers (which'is- a subset
of the. countipg numbers) is contained in the set of counting
numbers To write this in mathematical language we use the ",
which is read ".is contained in." You can now write: - {2, b, 6,

8,-...} © f1, 2, 3,4, 5,6, ...}. Sometimes the symbol """
. 3




-is also used.

F * ’ e ‘ {1’ 2’ 3’ u’ 5’ e ’] D [2’ "u” ‘6’ ‘8’ . e o}’

%% which reads: The set of counting numbers contains the set of
%%" , eten counting numbers. Let the set of your class be called "C"
S . .

%ék : \and the set of boys in your class be called "B". You can then
: 3‘" ' write: . o o : ) * )

‘\,:: H R 7 - . . e e . g©

=l ‘ : o BC C, or )
£ . Vs
g%'" You may be helpe” in this study by use of diagrams. A

mathématician a/uays draws figures or dlagrams when p0831b1e

SN
gf@ ~~—The diagrams used below are called "Venn" diagrams. Consifler .
g

again the example B C C. We. skefch the following:

"EQ;‘: . \| . , i 0 \
%  5oys in

%; o you- class

; your class

/

, ‘
|

This illustrates that the set of boys in your “class is con; ined

An the set of your class. Again:

Al .

flowers .

All  flowers

/ ! . - 3

i1lustrates bhat the set of éll red flowers is cohtainéd in the

; set of all flowers. Let the set of all red flowers be ca?“?d R
» t and the set ofall flowers be called F. The relationship of
i ’ , . i
- : 11

This is read " contains.” You can now also write:




R and' F can then e written as:
R CF, or <
F D R. ‘

Consider the following Venn d1agram:

. ~ .
',TAQS diaéram 1ndicates that the -set of all red flowers belongs to
th set of all flowers. It also 1ndicates ‘that the set of all
tulips belongs to the ‘set of hll flewers. . Let the set of aill

tulilps be called - T The abo relat‘enship may noy ‘be expressed

as: . , .

»

IiC;F," and
N . : TCF. | ] ..‘\

What can you say about the' relationship of set : R kend set T? g'

- You “would certainly have to say that some tulips are red and are,
thus contained in the set R, but you certainly cannot say that
T C R 1s true. Gi.ve some thought to this situation for 2 while.

"

, Exercises 1-2-b L f//

f 1. Translate the following mathematical sentences Zpto Engl sh: -~

' " (a) I1f X € (Red flowers], then .X € the set of all flowers.

L

(p) MC N,ﬁand N D M. N
(e) (1, 3, fs 7, 971170 € (1,72, 3, 4, 5,06, L)
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Write éll possible subsets of the set: . (4, 5, 6]}.

mranalate ‘the following English sentences into mathematical .
sentences. . -

- »

,(2) "The set (12, 20, 32} is contained in the set of all
. whole numbers. )

4

(b) The set of the Great Lakes contains.the set of Lake Huron ‘?
- and Lake Michigan. . S i

(¢} The set of ({Hoover; Truman} is contained in the set of
all U. S presidents since 1920.

Draw a Venn diagram to illustrate the following:

(a) The set of the Hudson and Ohio Rivers is contained in - %
. the set of all rivers in the United States. 4 ‘ .

{v) The set of tigers, lions, and baboons is contained in
. - the set of all animals. o .

: 'kc) "The set of 16, .36, and 40 is contained in the set of
. _all counting numbers which are multiples of &4, S

(d) The set of 6,‘%,-3' is cpnﬁained in the set of all . . 3

y

‘rational numbers. .

'Which of the following are true and which are false? ' -

(2) {Al,)Tbm] D {Al, Rob, Jack, Tom}.

Aw) {Sam, Sue} C [Slim, Tom, Bob, Sally].

(e) ~The set of all yellow roses is contained in the set of '
all yellow flowers. . .

~

£
¢
5
(i
2

<

(a) . (28, 56, 112} C the set whose elements are multiples of
4 and also of 7. °

v
3

R
.

6.  Given three sets A, B, and C. If A DB and BD C,
does A O C? 1Illustrate your answer with a Venn diagram.
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~/i-3. Operations with Sets

Unlon

-

Suppose the set: {Bill, Jim, Tom, Sam} are the boys of a
class who play in the band. Call this set B. Let the set:
{Sam, Tom, Carl} be the boys in the same class who have red
hair. Call this set R. Now if we éombine these two sets we
- would get the set: {Bill, Carl, Jim, Tom, Sam}. This would be
the set consisting of all elements which belong to set B, or
to %et R, or to both sets. We call this the union of two sets. -
The §ymboi used is: "U". We can now write:

(Bi11, Jim, Tom, Sam} U {Sam, Tom, Carl} =
{B111, Carl, Jim, Tom, Sam}.

i w; call the union of these two sets C, then you can write: Ly e

—_ .
BrL) R =C, aAd it is read: B union R equals C.

The ccmbining of two sets in this manner is called an operation.
Before working some problems let us consider another matter which

was introduced by writing' B U R = C.

Equality of Sets

We say that.two sets are equal if and only if each element of
one :is also an element of the other. Suppose we have two sets - A
~and B: If AC B ard B C A then we can say A = B. For ex-
' ample, suppose that in your clas# ghere are only four redheaded
‘pupils which we shall call set R, and furthermore, these four
redheaded pupils are the only ones having their birthdays in
January, which we shall call set J. We can write:

- RC J and 'J C R, hence R = J.

Consider again: B U R =C. If we can write (B U R)C C and
¢ C (BUR), toenwe can say: B U R =C. After some thought
you should see that this is a true statement. Instead of saying
that two seis are equal, we sometimes say they are identical. This
is a good expréssion since we can say that two sets are equal if

Panb
o .
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and only if every element of each is an element of the other.

Propeﬁties
1. Consider again the two sets, B and R. Do you suppose

that » - -
BU R=RU B
Let us investigate:

(Bi11, Jim, Tom, Sam} |J {Sam, Tom, Carl}

BURSE=
= {Bill, Carl, Jim..Tom, Sam}.
RU B = {Sam, Tom, Carl} | (Bill, Jim, Tom, Sam}

{Bill, Carl, Jim, Tom, Sam}.

You see, then, that B U R =R U B. Does this recall to you
what you learned about’ the "commutative" property? With a little

thought on the union concept, you should see that for any two sets
M and N, M U N=N U M, and the commutative property is true

for sets under the operation of union.
2. Do you think the rollowing 1is true?
- A

AU (BU ey= (AU B)U c.«

et A= {1, 2, 3); B=(1,"%); Cc = {2, 5, 6).
Then: A U (BU C)=(1, 2, 3} y (1, 2, &, 5, 5}.
) (1, 2, 3, &, 5, 6},
and (A UB) U ¢C° 1, 2, 3, ¥} v (2, 5, €},

- (1, 2,3, &, 5, 6).

You see, then, that in our example: AU (B U C)= (AU B) U C.
This should recall to mind the associative property. With some
thought you snould see that under the operation of union the asso-
ciative property is true for sets.

15
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= 1-3
' Exeraisefs 1-3-a ,f,.-‘:"f*:" VIR g AT
If set M = (Red, Blue, Green} and get N = (Blue,
- - Yellow, thite}, find M { N. ' -
e Y. - ~ .
3 (b) Is M U-N=NU M2 Wny?

. 2, Let; A Dbe the set of even counting numbers, . B the set of
- odd counting numbers; and C the set of all counting numbers.

(), Is A'U B=2C? Why?

(b) Is A C C? Uny? ‘ . }

(¢) Is AC B Wny? | - .
(@) 1s A U B=BU A2 Why2 ‘ B E
(e) Does B D A? ¥? , : ‘ . | }557

(f) Draw a Venn diagram to illust;raj;e BC C.

(g)--18 A = B? Why?

¢

/
3., Given three sets R, S, and T.

¥
ar

(8)-1s (RUS)U T=RY(BUT=TU (RU 52 Why? :
'(%6"Suppose (R:USSy T and:T C (R U S), ‘then is
R U 8=T? Why? . ) .
4. Let C be the set of pupils in your class,. S Dbe the set o
of pupils in your schouol, and X be the. only redheaded pupill
in your class. Discuss the following as to whether or not

they are true. * ' s

[P

{a) X€ s (e) X € ¢C ,
{
(b) cC s (£) sD ¢ §
3 (¢) c=5 (g) Is X a subset of C? Of 87 |
(d) .sC ¢ (h) 1s 'C a subset of S? !
5. (a) Consider two concentric circles. Let X De the set of f
points within a circle whose radius 1s % units and Y !
be the set of points within a circle whose radius is 2 ,’I
units. Draw a Venn diagram to show: X U Y. ' /

16

~
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BT~ By Is X C Y, or Y C X? After glving your answer
‘ . complete the statement: is a subset of

i
SO \ ;’ M
© Intersection , |
' f Aﬁother operatygﬁmwitg sets 1s that of intersection. Do you R
récall this operatﬁon from'Chapter 4 of the Seventh Grade text? §
You no doubt remeﬁber that the symbol for intersection is "r\". :
' Cﬁnsider sets A and B. If we now write: Af{) B, it is read
"A intersection B." The intersection of two sets is the set of
511 elements which belong to both sets. For example; let set A

ﬂe {Tom, Sue, Carl, Joan}, and set B be . {Sam, Sue, Tom, Sally}‘é
Do you remember the following Venn

Then A M. B = {Sue, Tom}.
diagram we had several pages back?

Al w
flowers

~

All red

flowers

b4

You remember a question was raised about the relationship of R
and T, where R was the set of all red flowers and T was the
set of tulips. You can now see that the shaded part of the
diagram is R () T. This situation presents us with another set
which we have not mentioned. Are there any yellow tulips in

[4 N
"
'

set R?

~

! gull Set
empty. Such a set

/ .
At times we have a set which 1is said to be
For example,. the set of yellow

is sometimes calied the "null set."
thlips contained in the set of all red flowers 1is an example of a

Suppose there are no redheaded pupils in your class

/ " null set.
then the set of redheaded puplls in your class is a 9u11 set,

f' i . .
' LT
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Another example is thé set all voters who have their légal -
residence in Washington, D. C. We shall use the symbol "¢"
(the Greek letter phi, pronounced "fee") to designate the null set.

¢

3 We say that ¢ 1s a subset of every set. - .

g Properties

1. Given two sets M and N: 1Is it true that M I N =
N M2 Let M be (1,2, 3,4 and N be (3, 4, 5, 6},
then M N N = {3, 4] and N N M= {3, ¥}. In view of your
previous study you are‘led to see that the commutative property |
applies under the operation of intersection of sety. _ s

1
4
B

o

2. 1In a similar manner, given three sets R,’S, and T, 1t
can be shown that\the associative,property holds. We would then
have: RN (SN T) = (RN 8) N T. Select an example of your

052 and see if you get a true result.

3. Are you reminded of anytning by the followlng, where R,
S and T are threeg sets? :
| RU(SNT=(RU SYN (RY T)-
et R (1,2, 7}, S=(1,3, %) and T=(2, 3, 5}.
meén R U (SN T =01, 2 7} U ({1, 3, ¥} N (2, 3, 5})
(1, 2, 7y U (3) )
{1, 2, 3, 7] '
and (R U S) ﬂ (RU T) =
= ({1, 2, 7} WU {3, »3,4})0({1 2, 7}u{2 3, 5))
= {1) 2, 3, 4: 7} ﬂ ,[1: 2, 3, 5 7} -
) = (1, 2, 3, 7). "

et ne

N %

This illustrates the distributive property of union with respect
. to intersection of sets. In working with sets we ‘have two forms
‘ of’ this property. We have just studied one form: namely,
“~ Ry (SN T=(RUS)N (RU T). The other form is:
. _RA(BBUTM=@®NS) U (RN T), which is the distributive
property, of intersection with respect to union of sets. This is ‘
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somevwhat different from what you studied in working with the
counting numbers in Chapter 3. There ‘was only one form of the
distributive property: namely, multiplication with respect to
‘addition. ' '

~

Ekercises 1-3-b

1. Given the three sets: A.= {boy, girl, chair}, B = (girl,
chair, dog} and C = [chéir, dog, cat}.
(a) Find A B. \\
(b) Show that A N c =ciN A,

|

(c) Show that A N (B U [)

i

(AN B U (AN ©).
¢ N (AN B).

2.. {a) wWhere ¢ represents the null set, and H 1% any other
set, is the following true? ¢ U H=HU ¢. .Explain
your answer.

(d) show that A& N (B N ¢)

il

(b)“’Is $ N # = A2 Explain your answer.

(¢) Under-the operation of union of sets, what name may be
applied to ¢? (Hint: compare zero in addition and
¢ in union of sets.) ' '

3. Let R represent the set of points on the segment AE, and
S represent the set of points on another segment TD.

(a) 'If R N S =¢, then what is true about the two line
segments? 4 -

(b) If R N S # ¢, then what is true about the two line
segmen‘cs‘7

4, Are there any siiilarities in properties betwe¥n the symbols
"U" and "M", and the symbols "+"  and "\C? Explain

your answer. ‘ \

5. Draw a Venn diagram to illustrate .the intersection set of all
members of the band irr your school and all the pupils in
your class,

19
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6. Show by use .of a figure the intersection set of two intersect-

9

ing circular regions. Shade the intersection set.

7. (a) Let E Dbe the set of even counﬁing numbers:
. {2, 4, 6, 8, ---}. What must be the set F so that
EyU F=2¢C, when C 1s the set of all counting numbers?
(b) What is E () F?
8. Given two sets A and B: ¢

%

"B? Explain your

0

(a) If A C B, is it true that A | B
answer.

il

(b) If A C B, 1is it true that A W B = A? Explain.

1-4. Order, One-to-One Correspondence
Order . -

In many sitaations the order in which we write the elements of
a set is immaterial. For example, set -A: {Bill, Tom, Sam}, can
- ‘be written as (Tom, Sam, Bill}, cr as {Sam, Bill, Tom}, Jjust as
Wrﬂ/~~«wweir«a8winmthe original. Under our definition of equality, all

three of these sets are equal. At times, however, the order is
important, For example, the name William Thomas 1s not the same
as Thomas William. If we wrote these two names as a set: {William, -
Thomas}, then under our present framework, we could just as well
write the set as: { Thomas, William]}, and the two sets would be
equél, or identical. An ordered set i1s one wherein there is an
element which is the first térm, another element which is a second
term, and so on. When we wish to indicate that the elements of a
set are ordeyed, we shall use pareﬁtheses ( ), instead of braces

{ }. If we now write the set composed of the elements Thomas,
William in the form: (Thomas, William) it is not equal to the
set: (William, Thomas), because the set is ordered with the -
glement Thomas in the first position and the element William in
thF second position. A set of two elements‘written in this manner

/

20
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is sometimes called an ordered pair. .You had some-contact with
ordered pairs when ycu made graphs in Chapter I3 of the Seventh
Grade text and in Chapters.l and 2 of the Eighth Grade. A set
such'as: .(a, b, ¢) may be referred to as an ordere8 triple.
This idea may be_extended to many ‘more than 3 elements. For
example, the ordered set of the first n counting numbers:

-(x, 2, 3, ¥, 5, 6, ..., n), would give us an ordered.set of

n elements where n may be any counting. number, Thie idea

will be used in the sectlon on Counting.

Ordered pairs are very useful in many branches of mathematics.
When you study a course called Analytical Geometry, you will deal
with ordered pairs such as (1, 4), (6,_2), (12, 15). -

Consider the set of people in line before the box office of
a theater. 1Is order. important in this, ‘situatibn? If you should - ——
try to. move ahead of someone already in line, you would be made
‘t.o understand, rather qu;ckly, the importance of order in this

case. There are people who consider order 1mportant enough to

take a bed roll and sleep .aear a box office, so as to be well up

in a line when the office opens. Some baseball fans do this for the
World Series. Can you think of other similar situations?

As you know, the following 1s a true statement:
{1.) 2: 3} =‘{1: 3’ 2]-
" Gn the. other hand, (i, 2, 3) #.(1, 3, 2), because these are.

ordered sets.

¢

One-to-one Correspondence

One basic study of sets deals with the comparison: of two or
more sets to see whether or not the numbers are equaliy numerous,
This is done by matching the elements of the sets. In\the
opening pages of Chapter 2 in the Seventh Grade text, vou read
that 1n the long ago a shepherd probably kept account of his
sheep by having a notched stick - a notch for each sheep and a
'sheep for each notch. With this arrangement he could tell‘whether“
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- of notches with the set of sheep. If all sheep'were present, we
could say there was é'one—to-one correspondence between the set of

sheep and the set of notches.

Cconsider your class. Suppose there 13 the same number of
seats in your classroom as there are pupils in your class. When
all the pupils are present, then the set of seats and the set of
pupils are in dne-to-one correspondencel In other words, the .
two sets are equally numerous. If all puplls are present and .
seated in their assigned seats, then youfﬂteacher can tell .at a -
glance that there is perfect attendance for the ‘cay. w&thout
much more than a glance she can tell how .many are absent 1f same
are not present. How does she do this? “What can you say with

or not any sheep were missing by comparing, or matching, the set ° . l
|
|

n

respect to bnet:z;zne carrespondence of the following: . -
1. (1, 2, 3,5} (0, x,A\, v}; (A, B C, D} L :
. 2. {1, 2,3, 4 5 6,7, 8,9, 10};
E‘:-“"' ) - {a’ b’ c’ d, e’ f, g’ h, i’ J}‘ ® ’

3. {the number of fingers on one hand};
{the number of symbols in a base five system};
{the number of players on a boys' basketball team}. . \\

Y

L - In each of the 3 groups there is a one-to-one”cbrrespondence'
petween the élements of' one set and the elements of each of the
other sets.

: " We are-now in a position to state a general princirie with

% ‘ regpect to sets and one-to-one corfespondence as follows:

'

Given two sets A and B. These two sets are

‘sald to be in one-to-one correspondence if we can palr,

or match, the elements of A and B such that each
element of A pairs with one and only one element of B,
and in the same matching process each element of B pairs
with onevanddonly one element of A. This principle may
be staﬁed more precisely in the following way:




18

Let Q and B be sets. There is a one-to-one corre-

snondehce between A and B if there éxists a collection
H of dpdered pairs with the following properties' e

1. The.first term of each pair of H is an element -

of A, '
ot 2. The second term of each pair off H 1s an element

of B,

3. Each element of A 1is a first term of exactly
one pair of H, __— .,

4. Each element of B 1s a second térm of exactly:
one pair of H. o R

* f/o.)
In Problem 2 above let A béﬁghe set

- ﬁu,zaus,smes,m} |
l . !

and B the set * ’ 3t

»

kY -~
Vo

_ la,b,c,d,e, £, g b, 1, ). .

A e

The 6t H would lodk like this: ,' N
_{(1 a), (2,b), (3,¢), (4,a), (5.6), §6~f)z, (8.,2) {9:1),_(20,))

Unless the concept of ordereis to be taken 1hto cohsideration,
- the matching process may be done in more than bﬁe way. -Gorisider
set. A: ([Biil, Tom, Sam}, and set B: [Ann, Jane, Susan}. Sirce
theée.sets have ‘only three elements, we can see at a glance that
| there 18 a one-to-one correspondence between them The, matching

process, however, oan be done in 'six ways." Two of theﬁ are ag
o ' follows: , B
o | set A Set B | Set A Set B
Sl \
%‘i{ + -
- Bille————>Ann Bill<———>Ann
v Tom_¢—————» Jane Tom &————»Susan
?“ Sam «<—————» Susan .- | Sam €«—————>Jane
A: <
x , Figure 1-l
i
?s’?i« ) '
7,
%
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The symbol "ea" - Y I‘“ simply means, for example\ that
'Bill is atched with Ann, and Ann is matohed with Bill. \

™

Iet us consider the elements of these twc sets again, and
write . +he\Pets as follows: ;

A: (Biil}fTbm, Sam), B: (Ann, Jane, Susan).

The notation indicates the two sets are now ordered. Of ceurse,
we can still match the elements in six ways. If, however, we.want

: to preserve the order, the elements can be matched in.only cne way

as follows

v

-

3 ! . . Bille<—>Ann
Tom «—> Jane
Sam <——» Susan.
Equivalence ’

You remember wWhen we talked about the equality of sets, we
sald that two sets were equal, or identical, -if and only if every ]
element of each 1s an element of the other. -For example,

{1, 2, 3} = {1, 3 2}

o

because the two sets contain the same elements. The concepﬁ of
one-to-one correspondence introduces a new concept of equality,
that of. equivalence. We say that two sets whlch are in one-to-one
correspondence are ;equivalent. We shall indicate this fact by
using the symbol "e—", which was ysed in matching the elements
of sets. For example: - ;_
4

. \
{Bill, Tom, Sam}<—> {Ann, Jane, Susan}:

Again, given two sets A and B, if we write: A<—>»B, we mean

‘that there i1s a one-to-one correspondence betwesn the elements of

A and the eiements of B,

3




Exercisgs 1-4 . . ) .

,{ U BN cenetruct tables similar to those of Figure 1- 4 to show the
- additional four ways in whlch the two seﬁs may be matched.

2. (a) How mahy elements are in each set in Problem 12
] (b) Ih how many tables 4s . Bill 4——->Anp? -
:@" : (¢} What arithmetic operation on the answers to parts (a)

and (b) gives the total-number of ways in which the members |
: . of Set B can be matched with. the members of Set B? ]
3. Use the sets C = (1, 2, 3, 4} and D= {a, b, ¢, d} for ' §

A5

this problem. ’ o L ’ -

(a) Match each of the elements of Set C with an element of
Set. D keeping l.«—>»a in all cases. - -

gl
>

PR R A

(b) How many such hmatchings are possible? - S o

(¢) 1In how many matchings is 2<—>a? Do not make addi¥ional
tables. . . )

EEPSEY :v:,/-;“”.ﬂ:';gwew‘w,

(d) In how many matchings 1is '3 «—> a? .
(e) In how many matcnings is 4 € a?

{f) How many possible matchings are.thers between sets C
and D° } N

: *(,) Write a rule to find how many matchings are possible
e . between two equivalent sets.

2 4, Determine whether the following are true or false. Use ex-
i) amples to illustrate your ansvers. '

- (a) Identical sets are also equivalent.
. (b) Equivalent sets are 21so identical.

(¢c) Equivalent sets may. be identical.

- {(d) 1Identical sets are never equivalent.

N
t
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3 [ -5, Gonstruct a matching tabLe for "fhe following sets.so. that - e
) - ‘order wi}l be preserved' jl, , 3, 4, 5, 6), . . L
(x, ¥y, t, a, b, c) - w oo

. -

6. Suppose you buy a carton of a dozen eggs. IS it necessary
to count the. eggs'in orde to tell whether or not you_have
a dozen? Why? -

7. Given two set3 x and/y. If xC.y and*y C-.x, can
we say that the two s¢ts are in one-ta-one correspondence?

Explain. ) _ - - -

8. f&re there-more points on an arec of a ‘circle than on 1ts p)
subtended chordj, Explain your answer,
/

/

1-5 The Number d% a Set and Counting N .o

Given the sets {1,.72, 3 4} and {0, 1 /\ V}/r Ybu notice’

that there 1s a one-to-one correspondence betwéen them: In addi-

._Jtion you see that the sets are composed of 4 elements. In fact,

any two sets which are 1n one -to-one correspondence have{bhe same
number of elements. Sets, however, will Vary in the number of

elemenpé?which they contain, This may vhry all the way from zero,
the. nfll set, to an.infinity of elements. The word. "infinity"
is t new to you, because you will remember that there are an

[ R R oy
~

1nf1n1te number of poiﬂto on a line, or again, an infinite number
of whole numbers. A set containing an infinite number of elements
- y is called an infinite Set} otherwise, the set is called a finite(
ggﬁ. Since sets vary in the number of elemehts they contaln, we
Jcan; then, assign.a'number o a set. We can only assign the same

N I AT A 7S A S

HE

number, however; to those sets which have a one-to-one correspond-
ence between them. In _nis discussion we shall consider only
finite sets. ' ‘ _
When we wish to talk about the number of a set we shall use the
. following notation: n(A). This is read: "the number of set A."
More briefly it is at times read: "n of A."




For the_ee;s:
{1, 2, 3, 4} and (0, 1,A, V},

- We can npw wwrite: #

n(@, 2, 3, i) = n (6, LA, ¥)).

f

The use of .the counting numbers: (1, é, 3, 4, 5, 6, 7, ...),
'TgiVes us a basic sequence which we may consider as the numbers of -
finite sets., Every counting number, then, may be considered as the
“number of the set of all counting numbers up to and including it.
Counting can be' "con~idered as'a method of matching between any
.finite set and a subset of the counting numbers. Let us designate
the set of counting numbers as C. FPFurther, let.us label the

subsets.of- C as Cy, Cys Cy, ; where C, = {1}, C, = {1, 2},

C3f= {i{ 2, 3}, and so on. As an example, let us count the set
A composed of ({Sam, Carl, Tom, Jack}. '

Set A: {Sam, Carl, Tom, Jagk)

set G:, {1, 2, 3, 4, 5, 6, 7, ...).
By matching you see that set A matches with subset Cu of the
set C.. Since n(Cy) =4, then n{A) =

+ Consider set A: ({1, 2, 3, 4}, and set B: {5, 6, 73,
which are said to be disjoint. Two sets are said to be disjoint
if tnej contain no elements in common. Now do you remember the
expression. A {J B? Applying the nperation we get a new set:

{1, 2, 3, 4, 5, 6, 7}. Upon matching this new set with C, you
note that it is C,. So n(A U B) =n(Cy) = 7. Iet us consider
the problem through another example: Given the dlsjolint sets,

M: f{a, b, ¢, d}, and N: {e, £, g}. Now M U N = {a, b, ¢,
d, e,‘f, g}. Upon matching this new set with C, you notice that
‘it 1s also C,. Hence we have: n(M U N) = n(C7)'=

Do you now notice that the number of the union of the two dis-
joint sets may be considered as the sum of the number of the sets?

21
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Exercises 1-5

.

what is the number name of the following sets?
(a) n[l’ 2, 3‘9 49 5, 6]0 °
(b) {a” b: C’ d}-

“(c) - {bird, dog, cat, chair, horn}.”

(d) (1,X, =, VA 1.
(e) which of the above sets have the same number?

Suppose a set R matches suert T of another set S ‘
What can yo'i1 say about the rumber of R in relationship '
to the number of S? . . - .

Considering only finite sets, if set M matches set N, and
set N matches set R, what is the relationship of set' M
to set un? :

How does the number of the set of automobiles being driven

at this moment cempare with the number of the set of their .
steering wheels? : )

By matching the sets C,, and 07,; shdw ‘that 7.< 12,

given two sets A: {Bob, Sue, Tom, Joe} and B:  {cat, dog,

chair}). Find the set A U B. Now match the union of these
éets with C and determinhne the'number of the urnion set.

Given the two disjoint sets M: [1, 2, 3, 4}, and
N: {5, 6, 7, 8, 9}. Find M UN and determine n(M U N)
by comparing it with C. '

LA
¢
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: S SUPPLEMENTARY UNIT 2

SPEéIAL FIGUAES IN PROJECTIVE GEOMEIRY

2-1. Geometry and Art

"In a certain park there is a row of poplar trees. They are '
evenly spaced, and all the same size and Shape. Two boys wanted
to draw a plcture of them. The first said,

"I know that these trees ave all

the same size. I know that there
1§ the same digtance between any
tﬁb adJaéentfoneé. This 1s how

I will draw them."

The other said, "The trees further off look smaller to me, and
even though I know‘they are not smaller I will draw them as I
see them." , Which of their ’

pictures do you like better?

The second boy used the idea of perspective, This 1is a very
important idea in art if we are. interested in drawing things the

30
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way they really look to us. It 1s the ildea used in givingfdepth
L to a picture. i :
' Of course," not @1l artists have wanted to do this. In ancient
Egyptian art, fpr exemple, it .was the rule to draw the pharaoh .
larger than anyone else in a picture; and the slzes of other people
were made to depend on their importance.
- Hot until the end of the Middle Ages didgartists make serious
systematic efforts to understand per§p¢ctive At that time they
became greatly interested in' learning thc¢ rules 'that would help
them plcture realistically the world about them. This period,
which historians call the' Renaissance, was a time of great devel-
opment in science and learning as well as art. It was a time of
new ideas and of a new interest in understanding the 1aws of
nature. It was a time 6f experiment.’ , -
One of the artists of this period was Leonardo da Vinci
Though we rememper him best for his paintings, he had a wide range
"of interests. Among other things he tried to design a way man
cSuld fly. He belleved that a knowledge of sclence and mathematics
1s an'essential $o0ol for the artist. .
An artist who did a great deal of work in developing rules of
perspective was Albrecht Direr. In some of his drawings we can
see the way in which he studied these problems. You can find
examples of them in Mathematlcs in Western:Culture,,ﬁ& Morris-
Kline. Thils book contains many other pictures youfwill also
find interesting.
A mathematiclan, Girard Desargues, wrote a book about the
ideas of geometry that would be useful in connection with the study
of perspective. H He was the originator of what 1s called projective
seowetgx. ;
The word "projective™ can be understood if we think about draw-
ing‘a picture. In drawing a tree, you can'thiﬂkfof a lihe extend-
ing from each point you see to your eye. Each line intersects the
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plane of your canvas in a point. The points in the plcture thus
match the points of the tree that we see. A geometer says that
“the picture (the set of points) on the canvas is a projection of -

the set of points of the tree.
Here is another example that will help you understand the

sort of problems that occur in projective geometry Suppose there
is a triangular rose bed in a garden. Suppose an artist draws
this rose bed several times. Perhaps he draws it first as seen
from a pcint in the garden Next he draws it as seen from the top
of a high tower. Perhaps he tries other. locations as- -well. He
will find that in his pictures the rose bed 1s always triangular.
He will find, however, that the triangle nas different shapes
depending on_where he stands. He has diséovered The proJection
of a triangle is a ‘triangle. Later we will see another discovery
that can be made about this situation
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.Projective Geometry in a Plane --
One-to-one Correspondences of Point Sets .
. In this figure, lines ./ , and
j 5 are parallel. Lines drawn from
point P intersect lines _/ , and
/ o Orie such line intersects //7 1
in A and _/, in A'. Another
intersects /, 1in B and ,/72
B!'. The figure gives us a way of
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matchlng the points on.,/7 with the points on ,/7 To find the
point on 4ﬂ o that matches C, for example, we would draw the
1ine through C and P. The point where it intersects A o 1s
twe point that matches C.

This matching of oné set (the points on ,/7 ) with another
set (the points on.xﬂ) is called a one-to-one correspondence, as
we know. We have- found a one-to-one correspondence between the
points on‘A/ and the points on‘Aﬁ (Of course, 1if we used
some .other point in place of P we w0u1d find another oné-to-one
.correspondence between the points on 4ﬁ 1 and those on ,/92
The twq point sets can be matched in many different ways.)

Did you wonder why we chose parallel lines for,A/ and ,4’2
Let us see what would happen if we did not. In the next figuye
A/l and ,/72 are not parallel. We can s5till draw lines through
P cutting /1 and /2 Point - , ~
" corresponds to point

.“‘;:,.;,.,l..m,,w A, on y
: A' on 4/ o Point B copreeponds
to B!'. Point C 1is a special
point. It belongs to both the
set of poéints on 4”]_ and the .
set of.points on ,/’2. A line
through P that 1ntersects_jﬂ-1'
in C also intersects A/72 in
C. In the correspondence between .
points on ,/71 and points on A ‘ ‘ -f.
/o the poinu C matches 1tse1f

%
%
5
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It looks as though we have once again a one-to-one correspond—
ence between the points on 4/ 1 and the points on ,/7 But we
need to stop and think very carefully. We need to remember that
there is one line through P that is paraliel to_4ﬂ 1" Suppose _
this line (the dotted line in the figure) intersects ,f72 in the

~point D!. D! 1is a point on 4/72, but our system does not give
any point on.Aﬂ that matches 1t. . Polnts on,4/ o that are very
close to D! match points that are very far out on.,/l "E' 1s
one -such point.

. | 33 .
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There is also a line through F that is parallel to ./ ,
So there is also a point on _/ 1 that has no matching point on

.4’2 We have discovered: Our system gives us a way of matching
each point except one on.A’ with a point on.4/ X and of match-
ing each point except one on Aﬂ 5 with a point on.A’

Let us consider another example. ' This figure shows some of the
_elements of the set of lines )
through P. . Each of the lines
through P 1in the figure inter-
sects the line ,/7 in a pgoint.
The figure shows a way of match-
ing elements of the set of lines
through P with elements of the . :
set of points on_4ﬂ The line //@ ) 5\\~Jﬂ

./, matches the point A. The
lin° ,/72 corresponds to point B.

Again, however, we need to be careful. There 1s one line
through P ‘that is parallel to.4/ . This‘line does not have a
matching point on‘4ﬂ We see that: To each point on ,4/7 corre-
sponds a iine through P. To each line through P excepl one
there corresponds a point on -~ . '

The Idea gg Ideal Points

These examples will help you understand an ldea that is very
useful in projective geometry. It is the idea of an ideal point

en a line.

) In projective geometry we do not use the term "parallel lines.'

, Another way of saying "two lines are parallel" is "two lines inter-
sect in an ideal point." We think of each line as oontaining one
and only one ideal point, as well as the usual points we are
accustomed to th;nking about. We also assume each ideal point is

v
i -
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on a line; Actudlly each ideal point is on a set of lines, which
are "parsllel." 1In order to be quite clear, we can call the usual
points feal points. When we adopt this new language, we can say
that any two lines in a plane meet in a point of some sort. In
the figure, A , and 4/ meet
in the real point P. 4/ , and
4’3 meet in an ideal point
Formerly we would have said they
are parallel. The two statements
mean the same thing.

In our new language, the set
of all points on a line is made
up of all the real points of the
line and, 'in addition, the ideal point of the line.

Let us use this new vocabulary to describe the one-to-one
correspondences which we have already studied. As we do so, we
will find that it is a very convenient language for describing
these ‘situations. ’

In this figure we can now say
that there is a one-to-one corre-
spondence between the set of all
lines through P and the set of .
all points on /. Line /1 ' P . js
corresponds to the real point A. ..
Line / , corresponds to the
real point B. ILine ,4/3 we now )
say, intersects lilne _/  1in the A Y/
ideal point of 4/ . It corre-
sponds to the ideal .point on

x
7
g
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In this figure we can now say
sponuence "between the set of all
points on / and the set of
all points on ,/ o+ The real
point A on ,/ corresponds to
the real point A' on ,/ 2 The

: real point C Dbelongs to the set
& of all points on / and to the

i set of all points on Yy oo It

3 corresponds to itself. The point

s Dt on / o corresponds to the

g_.g ideal point on ,/7 The point

ng E on ¥ 1 corresponds to the

3- 1deal point on A o° (Remember that we now say that each—line~ ———
& contains an ideal point. The line through P and E :Lnte-"sects
2 /o 1k the 1deal point.) *

? " In this figure /£ , and e 5 intersect in an 1deal point.

: There 1s a one=to-one correspond-

§ ence between the set of all , A

. points'on ./, and the set of ° P

f all points on ,/ The line

it through P and A intersects .

;E; / 1 and / o in corresponding ﬂp
f real points. The line through 7 '

P parallel to /1 and ,/2
‘intersects /1 and /2 in an

T IN

i - ideal point. This ideal point [K‘ j,
Al i1s an element of the set of all :
points on / It is also an element of the set of all points

on.,/yz. It corresponds to itself in the one-to-one correspondence.
We have introduced the idea of ldeal point so that every palr

of lines intersects in a poiﬁt, that is, "two lines determine a-

point." What about the statement, "Two points determine a line,"

by which we mean that there is exactly one line through any two

points? This is certalnly true in the geometry that we are used

to, that is, for two real points. But is it still true for pro-
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Jective geometry? We have three cases to consider.

Case 1. Two real points A and B determine a line.. This ~

is true in projective geometry just as it Is true in the geometry i§§w;
we Know. ‘ S

it
&5
e
L
R
A
ks

eatiery

‘Case 2....If A 1is an ideal.point and B .1is a real point, then
. A whaﬁ determine a line. T? see why this is so, let /7 1
"Vﬂﬁ"“~ﬁemsome 1line through A. Then, we know from our familiar i
geometry that there is exactly one 1line through B parallel
to /.. Call this line -/ ,. Then A, and £, will
intersect in some ideal point of_4’ which must be .A since
_4’1 has only one ideal point. We have thus shown that ,/’ -
18 the only 1ine through A and B. There is one line through
A and B and there is only one.
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Cahe 3. Suppose A and B are two ideal peints. To take care
of this case we define an "ideal line" which 1s the set of all
ideal points.

R e s,

As a result we have:

(IO

L In Projective Geometry not only do two poinﬁs.determine
a line but two lines determine a point.

We do not have to distinguish between ideal and real points in
this stétement This symmetrical arrangement is very convenient.
The language of ideal points 1s probably new to you. Like any
new language, it may seem difficult until one 1s ac customed to 1t.
The examples illustrate its advantages. When we use the idea of
ideal points we do not have to consider pérallel.lines as excep-
tions to our descriptions.. o _ _
You will understand better how the idea of ideal pcints
5 originated if you think about railroad tracks. When we draw -
i railroad tracks we draw them as though they come together far
' away. The idea of ideal point is‘suggestéd by the way parallel
lines sometimes appear to meet when we draw objects in perspective.
et 0f course, if you are bullding a railroad track the:idea of
ideal points is not useful at all. When we build railroad tracks
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" we need to know, for example, that lengths of the parts of the

ties that lie between the tracks are all the same. The idea of

: length 1's studied in metrit geometry. Metric geometry uses the

idea of measurement. Projective geometry does not; this 1s why
we say that projective geometry 1is non-metric.

You may feel that ideal points seem unnatural. But you should”
remember that all points, lines, and planes are ideas. They are
jdeas that are developed because they are interesting and useful

for some purpose.

Exercises 2-1

1. Draw two parallel lines Call them ,/7 and ,/y Mark a
point P between them. By drawing lines through P, find
a one-to-one correspondence between the points on ,/ﬂ and

the points. on ,/ﬂ Label the points in your drawing, and
name three pairs of ‘corresponding points.

2. Mark points P and Q. Draw 2 line ./ , as in the figure.

The figure shows a way of
matching the set of lines ‘ .
through P with the set

of lines through Q. To the
line through P and A

corresponds the line through
Q and A. The line through
P and B 1is matched with
the lir. through @ and B. ) Q
In this way we can,find a
between the set of lines through P and the set of lines
through Q. Draw three other pairs of lines illustrating
this statement. '

3. 1In Exercise 2, is there a line.which belongs both to -the set

of lines through P and the set of lines through Q2

a
/

’
/

/
/

b
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4. 1In Exercise 2, which line through P corresponds to the
line through Q parallel to ./ % This line througﬁ P

"‘_“iﬁigisects.4/ "4n an ' . :

5.. Explain the mééning of the following statement: »if P 1is
any real point and .4/ is any line not passing through P,
there is exacti& one line which passes through P and .
through the ideal point on _/# .

6. In this figure four of the
lines are parallel.

(a) Four of the lines
. intersect in an

(b) The figure shows a
system for finding a
orne-to-one correspond-
‘dence between the points
of.4/ 1 and the point-~

//72. Find the points oLrresponding to E, F, and Gt'.

(

One of the most interesting ideas in projective geometry is
that contained in Desargues'! Theorem. In order to understand it,
let us think again about a situation we éons;dered earlier. ILet
us think about an artist who is drawing a triangulér‘rose bed.
Suppose thaﬁ he is drawing his picture ‘as he stes it from a
tower high above a garden. -On the following page there is a
sketch that shows the two.triangles -- the boundary of the rose

2-2. Desargues! Theorem
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bed and the plcture of it on his canvas. Each point'on the rose
bed is matched with a point on the canvas triangle.

X
Y IY
Y'Yy Ty

"In the sketch the vertices of the rose bed are called
A, B, and €. In the artist!s picture, the matching vertices
are labeled A', B', C!'. The three lines -joi matching
vertices all meet in poi.t O -- the eye of the artist. The
two triangles are sald to be in - perspective.
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We cun draw two triangles in the same plane that are

in verspective. In the following figure two such triangles : -{
have bteen drawn. Again, the vertices of one triangle are
- matched with the vertices of the other. Agaln, the lines
‘ Joining corregponding vertices meet in a point.

&

@

Exercise 2-2

: Copy this figure carefully. Extend AB and A'B! until
A _ they intersect. Do the same thing with AC- and A'C'. Do

‘ the same thing with EC and—BTCT. You have found three inter-
section points. Label them P, Q, and R. Do you notice any-
thing abtout these three points? They should all lie on the
same line.
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| A boy said, “I wonder whether this will always be true if T
extend the sides of a pair of triangles in perspective." He
tried it several times. It appeared to be true each time. Of
course it was sometimes difficuit to be sure, because he needed

to extend the lines a long way to find the intersection points.

He decided, however, that it was probably always true that the
three points of intersection were on the same line.

MBut what about this figure?" asked another boy. "In my

triangles, AB and A'B' have the same direction. When I ex-
tend them I get parallel lines. There 18 no real point of inter- a

section."

=5

>
>
[

"I notice something about the figure you have drawn, though,"
the flrst boy replied. "Those two lines are parallel to the line

through Q and R. 1 ink that this is another place where the
jdea of ideal point might be useful. We could say that the three

points of intersection are all on the same line, but now one of
the points is an ideal point."

42
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"He was right. If it is true that
(a) two triangles are in perspective, and
(b) each pair of corresponding sidés, extended, has
a point of intersection, a
then the three points of intersection all lie on the same line.

Other cases involving pairs of "parallel" lines can conven-
iently be described by the idea cf ideal point. ’
) Of course, the second. boy was not satisfied wi*h leaving the

-matte. at this.  He wonderéd why the three intersection points
. all were on the same line. Perhaps you wonder too. " If &ou do,
i ;- you will be interested in knowing the way we prove that the points
arg\aiwa§é on a line. A proof makes us sure the statement 1is
true -- a good proof also makes us understand better the reason.
Let us again think about the garden and the picture. Let us
suppose that:
(a) the plane of the garden and the plane of the pictura
3 are not parallel (this is the way we drew the figure).
: ‘(b) none of the pairs of corresponding sides have the same
direction.

Look at the line through A and A' and the line through B and
Bi. This figure will help you see the lilnes. :

70
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These two lines intersect at 0. When we have a palr of inter-

secting lines, we can think about the plane they both 1lie in.

Ehe line through A and B 1is in this plane; so 1s the line

: through A' and B'. We suppoged fhat these lines did not have

the same direction. We know that two 1lines in the same plane that
do not have the same direction meet, so we can be sure that theéz \

lines meet. P, of course, is the point Where they meet.

Now let us think about where P 1is. |P 1s on the line/
: : through A and B. This line is on the plane of the garden. So
P must be on the plane of the garden. is also on the line
through’ A' and B', which is on the plane of the canvas So
4 ) P is also on_ the plane of the canvas. Now we can gﬂ% these
% two facts together and say: P is oY the 1ntersection of two
3 \ planes -- the plane of the canvas apd that of the garden. The
intersection of these two nlanes a line.

Now wWe *have proved that P 18 on the line of intersection
of a certain pair of planes. We can prove 1ln preclsely the same
way that the line through B and C and the line through B!
and C! meet in a point, which we might label Q. We can also
prove, by exactly the same reasoning as that used in the case
of P, that Q 1s on the iine of intersection of the plane of
the canvas and the plane of the garden. Then we can reason the
same‘zfg;about the point R, the point of intersection of AC
and A'C'.

} So we can see that P, Q, and R all lie on Qhe same
line -- the line where our two planes intersect.

Now we have proved our fact for two trlangles that are in
different (and not parallel) planes.

Tt is more difficult to prove that it 1s true when the two
ﬁriangles are in the same plane. We can see, however, that if

/

we took a plcture of the garden and the canvas, we would really
have two triangles in perspective in the same plane, and that
the points of intersection of the pairs of corresponding sides of
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correspondiﬁgisides of the triangles would all be on a line. When
you are more familiar with the usé of geometric reasoning in rather
complicated‘figures, you should not find it difficult tc use this
idea %n constructing a complete proof.

N 4
2-3. Points and Lines in Desargues' Theorem
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In the figure we see that there are 10 main points: the
e vertices of the two triangles, the point O, and Phe three
intersection points P, Q, and R. There are also 10 main
) lines: the sides of the triangle extended, the lines through
o corresponding vertices of Che triangles,'and the line 'on which
lie P, Q, and R. By checking the figure you can see that --
(a) through each of the labelled points there are three of
the special lines, and
(b) on each of the special lines there are three labelled ¢
points.

40
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The figure for Desargues' theorem could re used for a very
"democratic" committee diagram, where, by "democratic" we mean

4 that in certain réspects each committee member 1s treated like
%z‘! every other one. We éould let each of the ten points corréspond
g' to a person and each of the ten lines correspond to a committee. \\.
§ If a certain point is on a certain line, then the corréesponding
5. person would be on the corresponding committee. Then

% 1. Each committee has three ‘members and each person is

; on three committees.

3 2. ‘Each pair of.committees has no more than one person in

% a .common and each pair of persons 1s on no more than one

% committee.

g 3. Each committee has exactly one person in common with six
T

other committees and each person is on a committee with

Eaizea

six other persons. ,

’

e

W2 F a0l

Exercises 2-3

1. Draw several figures illustrating Desargues' theorem.

2. One of the remarkable aspects of the figure for Deéargues'
theorem is that each point and each line play exactly the
same role. For example, we might think of A as the
"peginning" point in pldce of O and one triangle could
be taken to be COB. Since the third ﬁoint- on ﬁ is Q,
the third point on jﬁ? is A', and the third point on
is P, the second triangle must be QA'P. Then the points
of intersection of corresponding sides of the two triangles
should be on a line. Find the line.

3. Follow through the steps in Exercise 2 starting with the
point P.

46
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4, The" following converse of Desargues’ theorem also holds:
_If ABC and A'B!'C' are two triangles and if the points -
P, Q R defined as the intersections of the pairs o

: ﬁ K'B!, XEP K’E‘* ? lie on a line, then AA'

?;’! are concurrent. Draw & figuve'which shows this.

5. (Breinbuster) | Designate seven points by the numbers: 1, 2,.
3, 4, 5, 6, 7. Call the set of three points 1, 2, &4
a "line _/ 1" and so on according to the following table:

Line L1 Lo L3 ALw s e 7
POil_’ltB ' 1,2,4 2,3,5 3»4:6 1},5,7 5:6:1 5’,7,2 7:1:3

Show thﬁt each point lles on three lines. Is it true that
each pair of points determines a line? 1Is it true that each
pair of lines determines a point? Draw a figure which shows
this. (You cannot make all the lines straight and one will
have to jump over another.) .

o
-




SUPPLEMENTARY UNIT 3
> T REPEATING DECIMALS AND TESTS FOR DIVISIBILITY
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321, Irtroduction

" This unit is for the student who has studled a little
about repeating dedimals, numeration systems in different bases,
and tests for divisibility (casting out the nines, for instance)
and would like to carry his 1nvestigation a~11tt¥e further, under
'guidance. The purpose of this monograph is to give this guldance;
it is not Just to be read. You will get the most benefit from
th%s material 1if yoﬁ will first read only up to the first set of
exercises and then without reading any further do the exercles.
They are not jJust applications of what you have read, but to guide
you in discovery of further 1mportant and interesting facts. Some
of the exerclses may suggest othér questions to you. When this
happens, see what you can do toward answering them on your own.
Then, after you have done all that you can do with that set of
exercises, go on to the next secticn. There you will find the
" answers to some of your questions, perhaps, and a little more in-
formation to guide you toward the next set of exercises.

The most interesting and useful phase of mathematics 1s the
discovery of new things ir the subject. Not only 1is this the .
most interesting part of it, but this is a way to train your-
self to discover more and more 1mportant things as time goes
on. When you learned to walk you needed a helping hand, but
you really hag not learned until you could stand alone. Walk-
ing was not new to‘mankind'-- lots of peoplg had walked before ---
but it was new to you. And whether or not you would eventually
discover places in your walking which no man had ever seen before,
was unimportant. It was a great thrill when you first found that
you could walk, even though 1t looked like a stagger to other
people. Sn, try learning to walk 1in mathematics. And be inde-
pendent -- do not accept any more help than is necessary.
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3-2. Casting out the Nines

You may know a very simple and interesting way to tell whether
a number i1s divisible by 9. It is based on the fact that a
number is divisible by 9 if the sum of 11:& digits is divisible

by 97 also the sum of the digits of a number is divisible by 9, if

the number is divisible by 9. For instance, consider the number
156782. 'The sum of its digits i3 1 + 5+ 6 + 7 + 8 + 2 which
is 29, But 29 1is not divisible by 9 and hence the number
15@782 is not divisible by 9. If the second digit had been a
3 instead of 5, or if any of the digits to the right of 5
had been 2 1less, the number would have been divisible by. 9
since the sum of the digits would have been 27 which is divisible
by 9. The test is a good one because 1t is easler to add the
digits than to divide by 9. Actually we could have heen lazy
and instead of dividing 29 by 9, use the fact again, add 2
and 9 to get 1i, add the 1 and 1 to get 2 and see that
since 2 1is not divisible by 9, then the original six digit
number is not divisible by O.
Why is this true? Mérely dividing the given number by 9

would have tested the result but from that we would have no

idea why it would hold for any other number.. We can show what
is happening by writing out the number. 156,782 according to

what it means in the decimal notation:

3 4 7 % 10° + 8 Xx 10 + 2 =

1 x10° + 5> 100 + 6 x 10
x (99999 + 1) + 5 x (9999 + 1) + 6 x (999 + 1) +
7% (99 + 1) + 8 x (9 + 1) + 2.

Now by the distributive property, 5 X (9999 + l) =

(5 x 9999) + (5 x 1) and similarly for *he other expressions.
Also we may rearrange the numbers in the sum since addition is
commutative. So our number 156,782 may be written

"1 % (99999) + 5 x (9999) + 6 x (999) +
x(99) + 8 x 9+ (1L +5+6+ 7+ 8+ 2).

49
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v NoW 99999, 9999, 999, 99, 9 are all divisible by 9, the products

involving these numbers are divisible by 9 and the sum of these
products is divisible by 9. Hence the original number will be
divisible by 9 if (1 +5+ 6 + 7 + 8 + 2) 4s divisible by 9.
Thid sum is the sum of the digits of the given hymber. Writing
it out this way shows that no matter what the giﬁgn nuamber 1is, the .
same principle holds. \

\

\\

Exercises 3-2 \\

1

N !
1. (a) Test each of the numbers, 226843, 67945, 427536, and
45654 by the above method for divisibility by 9

.‘l'
(b) For any numbers in part (a) that are not divisible by
9, compare the remainders when the number is dtvided by
9 and when the sum of the digits is divided b; 9.

(c) From part (b) try to formulate a general fact that you
suspect 1s true. Test this statement with a few more

examples.

2. Choose two numbers. Eirst, add them, divide by ¢ gnd take
the remaiader: Second, divide each number by nine and find
the sum of the remainders; divide the sum by 9 and take
the remainder. The final remainders in the two cases are
the same. For instarice, let the numbers be 69 and 79.
First, their sum 1s 148 and thc remainder when 148 is
divided by 9 1is 4. Second, the renainder when 69 1is
divided by 9 1s 6 and wnen 79 1is divided by 9 1is
7; the sum of 6 and 7 1ia 13, and if 13 1s d*vided
by 9, the remalnder is 4, The result is 4 in both cases.
Wny are the two results the same no matter what numbers are
used instead of 69 and 79?7 Would a similar result hold .

for a sum of three numbers? (Hint: write 69 as 7 x 9 + 6.)
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If in the previous exercise we divided by 7 1instead of 9,
would the remainders by the two methods for division by 7
be the same? Why or why not?

Suppose in Exercise 2 we consldered the proauct of two
numbers instead of their sum. Would the corresponding result
hold? That is, would the remainder when the product of 69 -
and 79 4is divided by 9 be the same as when the product of
their remainders is divided by 9?2 Would this be ftrue in
general? Could they be divided by 23 instead of 9 to
give a similar result? Could similar statements be made
about products of more than twoe numbers?

Use the result of the previous exercise ‘to show that 1020

has a remainder of 1 when divided by 9. What would its
remainder be when it is divided by 3? By 99?

20

What is the remainder when 7 is divided by 62

You know that ‘when a number 1is writteh in the decimal notation,
it is divisible by 2 if its last digit is divisble by 2,
and divisible by 5 if 1its last digit i1s O or 5. Can

you devise a similar test for divisibility by 4, 8, or -25?

In the following statement, fill in both blanks wilth the same
number so that the statement is true:

A number written in the system to the base twelve 1s divisible
by if its last digit is divisible by . 1If there 1s
more than one answer, give the others, too. If the base wére

‘seven instcad of twelve, how could the blanks be filled in?

(Hint: one answer for base twelve is 6.)
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9. One could have something like "decimal" equivalents of
numbers in numeration systems to bases other than ten.
For instance, in the nuig?agipn system to the base seven,
the septimal equivalent of '5(30 + 6(%)2 would be written -
?567. Just as the decimal equivalent of 5({%& + 6({%)2
would be written .561 in the decimal system. The number
.142857142857 ... 1s equal to. 3? in the decimal system
anq in the system to the base seven Would be written .17.
On- the other hand,: 1y = (.04620462 ...)7 .  What numbers
would have terminating septimals in the numeration systenm
to the base 7? What would the septimal equivalent of
be in the system to the base 7? (Hint: remember that if
the only prime factors of a number are 2 and 5, the deci-

mal equivalent of 1ts reciprocal terminates.)

oiF
%
o
i@
Z

10. . Use the result of Exercise 3 to find the femalnder when
9 + 16 + 23 + 30 + 37 1is divided by 7. Check your result®
by computing the sum and dividing by 7. - ¥

11. Use the .results of the previous exercises to show that .
1020 -1 1is divisible by 9, 7108 -1 1is divisible by 6.

12. Using the results of some of the previous exercises 1f you
wish, shorten the method of showing that number is divisible
by 9 if the sur of its digits is divisible by 9.

13. Show why the remainder when the sum of the digits of a number
is divided by 9 is the same as the remainder when the number
is divided by 9. a?S

3-3. Wnhy Does Casting Out the Nines Work?

First let us review some of the important results shown in
the exercises which you did above. 1In Exercises 2, you showed
that to get the remainder of the sum of two numbers, after divi-
sion by 9, you can divide the sum of their remainders by 9 and
find its remainder. Perhaps you did it this way (there is more
than one way to do 1it; yours may have veen better). You know in
the first place that any natural number may be divided by 9 to
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‘get a quotient and remainder. For instance, if the number is
725, the quotient 18 80 and the remainder is 5. Furfhermore,
725 = (B0 x 9) + 5 and you could see from the way this is written
that 5 1is the remainder. Thus, using the numbEﬁQ in the exercise, =«
you would write 69 =7 x 9+ 6 and 79 =8 x 9 + 7. Then “
69 + 79 = (7 x9) +6+ (8x9)+7. Since the sum of two numbers
18 commutative, you may reorder the terms and have 69 + 79 =
(7x-9) + (8 x9) +6 + 7. Then; by the distributive property, .
69+ 79 = [(7-+ 8) x 9] + 6 + 7. Now the remainder when 6 + 7 ;
18 divided by 9 1s 4 and 6 + 7 can be written (1 x 9) + 4,
 Thus 69 + 79 =[(7+8+1)x9]+14 So, from the form it 1is E : %
= ‘written in, we see that 4 1is the remainder when the sum is
divided.by 9. It is also the remainder wﬁgn the sum of the - &
remainders, 6 + 7, .is divided by 9, ‘ "
Writing it cut in this fashion 1s more work than making the Lo,
computations the short way but it does show what is going on and E
why similar results would hold if 69 and 79 were replaced by
“any other numbers, §nd, in fact, we could replace 9 by any other
number as well.. One way to do this i1s to use letters in place of
the numbers. This has two advantages. In the first place it helps
us be sure that we_dié th make use of the special Rroperties pf
the numbers we had-withoug}meaging to do so. Secondly, we can,
after doing it for letters, see.that we may replace the letters
by any numbers. So, in place of 69 we write the letter a,. and
in place of 79, the letter b. 'When we divide the number a by
9 we would have a quotient and a remainder. Wé can call the gquo-
tient the letter g and the remainder, the letter r. Then we
have
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; a=(qgx9)+r
where r is some whole number less than §. We could do the
same for the number b, but we should not let q be the quo-
., tient since 1t might be different from the quotient when a 1s
N diviaed by 9. We here could call the quotient q'!' and the
remainder r!'. Then we would‘have

b = (q' x 9) + r'.
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Then the sum of a and b -will be ‘ .
a+b= (q X 9) +r+ (q' X 9) + r'f
Wé can use the commutative property of additlon to have
a+b=(qgx9)+ (qa*"x9)+r+r'
and the distributive property to have
a+b=1[(ag+q) x99l +r+r.

Then if r + r' were divideZ by 9, we would have a quotient
which we might calil q" and a remainder r". Then r + r' =
(q" x 9) + r" and

a+bw=((g+q') x9]+ (a" x9)+r%

= [(q+q +4a") x9] +1r".

MNow r" 1is a whole number less than 9 and hence it is not only
the remainder when r + r' 1_ divided by 9 but also the re-
mainder when a + b is divided by. 9.. So as far as the remainder
goes,rit does not matter whether you add the numbers or add the

remainders and divide by 9. )
The solution of Exercise 4 . goes the same way as that for
Exercise 2 except that we multiply the numbers. Then we would
have ’
69 % 79 = (7 x 9+ 6) x (8Bx9+7)
[((7Tx9) x (8Bx9+7)]+6x(8x9+7)
(7x9x8x9)+ (Tx9xT7)+ (6x8x9)+ (6x 7).

The first three) products.are divisible by 9 and by what we showed
in Exercise 2, the remainder when 69% 79 1is divided hy 9 1s
the same as the remainder when O + 0 + O + 6 x 7 1is divided by
9. So in finding the remainder when a product is divided by 9 .
it makes no difference whether we use the product or the product

of the remainders.
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If we were to write this out in letters as we did the sum,

it would look 1like this:
* e
axb=(agx9+r; X {qg"' X9 +r!)
= {(gx9xq" x9)+ (gx9xr!)+ (rxaq!x9)+

(r x v').

‘Again eéiy of the first three products is divisible by 9 and

hence th¥ remainder when a X b Jis divided by 9 1s the same as
when r X r?' 1s divided by 9. :

We used the number 9 all the way above, but thé same cenclu-
sions would follow Just as easily for any number in place of 9,
such as 7, 23. etc. We could have used a letter for 9 also
but this seems like carrying it too far.

There 1s a shorter way of writing some of the things we had
above. When ietters are used, we usually omit the multiplication
sign and write ab 1nstead of gtx b and 9q 1in place of 9 X q.
Hence the last equation above could be abbreviated to '

ab

aqa'9 x 9 + qri9 +.rq'9 + rrt
or
. ab

i

9 X 9qq' + 9qr"+'9rq' + rr'.

But this is not especially important right now.

So let us summarize our results so far: The remainder when
the sum of two numbers is divided by 9 (or any other number) is
the same as the remainder when the sum of the remainders 1is
divided by 9 (or some other number). The same procedure holds
forsthe product in place of the sum.

These facts may be used to give quite a short proof of the
important result stated in Problem 13, of Exercises 3-2. Con-
sider again the number 156,782. This is written in the usual
form:

(3 x 105) + {5 x loh) + (6 x 103) + (7 x 102) + (8 x10) + 2.

Now from the result stated above for the product, the remainder
when 10? is divided vty 9 1s the same as when the product of
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the remainders 1 x 1 1s divided by 9, that is, the remainder
is 1. Similarly 103 has a remalnder 1 X 1 X 1 when ‘divided
by 9 and hence 1. So all the powers of ten have a remalnder
1 when divided by —9. Thus, by the result stated above for the
sum, the remainder when 156,782 1is divided by. 9 1s the same
as the remainder when (1 X 1) + (5x 1) + (6 x 1) + (7T x 1) +
(8 x 1) + 2 1s divided by 9. This last is Just the sum of the
digits.‘>Writing it this way it 1s easy to see that this works
for any number. ’ )

Now we can use the result of Problem 13 of Exercises 3-2 to
describe a check called “casting out the nines” which is not used
much in these days of computing machines, but which 1s still
interesting. Consider the product 867 x 934, We iindicate the
following calculations:

867 sum of digits: 21 sum of digits: 3
934 sum of digits: 16 sum of digits: 7
Product: 809,778 Product: 3 x 7 =21

Sum of digits: 8.t 0+ 9+ 7+ 7+ 8 =39
Sum of digits: 3 + 9 = 12 \
Sum of digits: 1 + 2 =3 Sum of digits: 2 + 1 = 3.

Since the two results 3’ are the same, we have at least 3ome
check on the accuracy of the results.

Exercises 3-3

1. Try the method of checking for another product. Would it
also work for 'a sum? If so, try it also.

2. Explain why this should come out as it does.

D

If a computation checks this way, show that it still could be
wrong. That is, in the example given above, find an ircorrect
product that would still check.

1
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. Given thenumber (5-72) +@-77) + (2-7°) +(1-7°) + (%.7) + 3.
What i1s its remainder when it is divided by 7? What is its
‘remainder when it is divided by 62 by 3°?

5. Can you find any short-cu’ in the example above analogous to
casting out the nines?

6. In a numeration system to the base 7, casting out what
number would result corresponding to that in the decimal
system when nines are cast out?

7. The fol:iowing 1is a trick based on casting out the nines. Can
you see how it works? You ask someone to pick a number -- it
might be 1678. Then you ask him to form another number from
the same digits in a cifferert order -- he might take 6187.
Then you ask him to subtract the smaller from the larger and
glve yoﬁ the sum of all but one of the digits in the result.
(He would have 4509 ‘and might add th. last three to give you
14.) All of this would be done without your seeing any of”
the figuring. Then you would tell him that the other digit
in the result is 4. Does the trick always work?

One method of shortening the computation for a test by cast-
ing out the nines, is to discard any partial sums which are 9
cr a multipie of 9. For instance, if a product were 810,045 ,
we would not need to add all the digits. We could notice that
8 +1 =9 and 4 + 5 = 9 and hence the remainder when the sum of
the digits is divided by 9 would be O + 6, which is 6. Are
there other places in the check where work could have been
shortened? We thus, in .a way, throw away the nines. It was
from this that the name ‘"casting out the nines" came.

By Jjust the same principle, 1n‘a numeration system to theé
base 7 one would cast out the sixes, to the basge 12 cast out the
elevens, etc. -

ot
~3
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3-4. Divisibility by 11

_ There 1s a test for dlvisibility by 11 which is not quite so
simple as that for divisibility by’ 9 but 1s quite easy to appli.
' In fact, there are two tests, We shall start you on one and let
you discover the other for yourself. Suppose we wish to test the

number 17945 for divisibility by 11. Then we can write it as
before

(1.101) + (7-10%) + (9-10%) + (4.10) + 5.

The remainders when 102 and 10” are divided by 11 are 1.

But the remainders when "10, 103, 105 are divided by 11 are

10. Now 10 1is equal to 11 =~ 1. 103 = 10 (12 - 1), 10° =
(11 - 1). That is enough. Ferhaps we have told you too much

already. It is your turn to carry the ball.

Exercises 3-4-a

1. Without considering 10 to be 11 - 1, can you from the above
devise a test for Zivisibility by 117

2. Noticing that 10 = 11 - 1 and so forth as above, - can you
devise another test for divisibility by 112 '

We -hope you were able to devise the two tests suggested in

the previous exercises. For the first, we could group the digits
and write the number 179&5 as (1 x 10 ) + (79 x 10 ) + b5,

‘Hence the remainder when the number 17945 1is divided by 11
should be the same as the remainder when 1 + 79 + 45 4is divided
by 11, that is, 1+ 2 + 1 = 4. (2 1is the remainder when 79 1s
divided by 11, etc.) This method would hold for any number. |
The second method requires a little knowledge of negative
numbers (either review them or, if you have not had them, omit

this paragraph). We could consider - 1 as the remainder when

10 is divided by 11. Then the original number would have the
same remainder as the remainder when (7(- l) ]+ 9+

[4(- 1)) + 5 1is divided by 11, that is, when 5 - 4 + 9 -7 + 1
is divided by 11. This last sum is equal to 4 which was what

HY
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we got the other way. By this test we start at the right and
alternately add and subtract digits. This is simpler than the
other one.

Exercises 3-4-b'

1. Test several numbers for divisibility by 11 using the two
methods described above. Where the numbers are not divisible,
find the remainders by the method given.

+ 2. In a number system to the base 7; what number could we test
for divisibility in the same way that we tested for 11 1in the
decimal system? Would both methods given above work for base

7 as well?

3. To test for divisibility by 11 we grouped the digits in pairs.
What number or numbers could we test for divisibility by group-
_ 1ng the digits in triples? For example we hight consider the
‘number 157892. We'could form the sum of 157 and 892. For
whgt numbers would the remainders be the same?

4. Answer the questions ralsed in Exercise 3 in a numeral system
to base 7 as well as in numeral system to base 12.

5. ' In the repééting dé%imal for % in the decimal system there
ic one digift in the repeating portion; in the repeating deci-
mal for %T in the decimal system, tnege'ére'two digits in
the repeating portion. 1Is there any connection between these
facts and the tests for divisibility for 9 and 11? What
would be tne connection betyﬁen repeating decimals and the
questions raised in Exercise 3 above?

6. Could one have a check in which 11's were "cast out"?

7. Can you find a trick for 11 similar to that in Exercise 1

above?

~ -
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"ve a good test?) But it is werth ldoking into since we can see

'decimals. Consider the remainders when the powers of 10 are

55 3-5

3-5. Divisibility by T

There is not a very good test for divisibility by 7 1in the
decimal system. (In a numeration system to what base would there—

the connection between tests for divisibility and the repeating

divided by 7. We put them in a little table:

n 1 2 3 4 5 6 7
Remainder when 3 2 6 4 5 1 3
10" 1s divided T k

by 7

If you compute the decimal equivalent for %- you w111 see that
the remainders are exactly the numbers in the second, line of the
tahle in the order given. Why is this so? This means that if we
wanted to find the remainder when 7984532 1s divided by 7 we
would write

(7 x 106) + (9 x 105) + (8 x 1ou) + (4 x 103) +
(5 x 102) + (3 x10) +2

and replace the various powers of 10 by their remainders in the
table to get ' '

(7x1) + (9x5)+ (Bx4)+ (4x6)+ (5x2)+ (I x3)+2.

We would have to compute this, divide by 7 and find the remainder.
That would be as much work as dividing by 7 1in the first place.
So this 1is not a practical test but it does show the relationshlp
between the repeating decimal and the test.

e Notice that the sixth power of 10 has & remainder of 1 when
it is divided by J. If 1nstead of 7 "some other number 1is taken
which has neither 2 nor 5 as a factor, 1 will be the remalinder
when some power of 10 1is divided by that number. For instance,
there is some ﬁower of 10 which has the remainder of 1 when
it 1s divided by 23. This 1s very closely connected with the
fact that the remainders must from a certain point on, repeat.
Another way of expressing this result is that one can form a

6(
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number completely of 9's 1ike 99999999, which is divisible

by 23. .

Exercisé/B-j

Complete the following table. 1In doing thls notice that
it 1s not necessary to divide 1010 by 17 to get the remainder
when it is divided by 17. We can compute each entry from the
one above, .like.this: 10: 1is the remainder when 10 1is divided \
by 17; this is the first entry. Then divide 102, that is, 100
by - 17 and see that the remainder is 15. But we do not need to
divide 1000 by 17. We merely notice that 1000 is 100 x 10
and hence the remainder when 1000 .is divided by 17 1is the .
same as the remainder when 15 X 10, or 150 1is divided by  17. - ”q<%f
This remainder is 1%, To find the remainder‘when 10u is
divided by 17, notice that 10 1s equal to 10° x 10 and
hence the remainder when divided by 17 1s the same as when
14 x 10 is divided by 17, that is 4. The table then gives
the remainders when the powers of 10 are divided by various

numbers.

A
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3 7 9 11 13 17 19 21 37 101 4%
1 111 1
ot 1131 | 10
10° 1021 15
10° 1161 14
10" AR y
10° 1051 6
106 1 1 1 9
107 1 1 5
108 1 1 16
10° 1 1 7
1040 1 1 2
10ttt | 1 3
1002 | : 1 13
1043 1 1] 11
0t | 2 ) 8
10t° | 1 1 12
1046 1 1 1 2
Find what relationships you can between the number of digits'in
the repeating dec%mals for %, %, %3 .f%, %3, etc. and the
pattern of the remainders. Why does the table show that there
w11l be five digits in the repeating portion of the decimal for

1

ET? Will there oe some other fraction % which will have a

repeating decimal with five digits in the repeating portion? How
would you find a fractlon %

wh%fh would have six digits in the

repeating portion?
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If you wish to explore these things further and find that you
need help, you might begin to read some bodk on the theory of
numberé;ﬁ Also there is quite a 1ittle material on tests for

/ divisibility in"Mathematical Excursions" by Miss Helen Abbott

Merrill, Dover (1958).
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SUPPLEMEN{ARY UNI1 4
OPEN AND CLOSED PATHS

4-la. The Seven Bridges of Konigsverg

A'fiver flows through the city of Konigsberg, Germany. (The
city was taken over by the Russians following World War 11 and is
now named Kaliningrad.) There is an island in the middle of the
river which passes through the city. To the east of the island
the river divides into two branches. There are seven bridges
connecting -the island and the different parts of the mainland as
shown in the drawing below.

During the 1700's, a favorite pastime of the residents of
Kdnigsberg was to take walks ﬁhrougﬁ the city, following routes
that led over each of the seven bridges. An interesting game
developed whereby they tried to follow a path that led to all
parts of the city in such a way that each bridge was crossed
only once. And so the people of Kdningsberg amused themselves
on their Sunday walks, but no one discovered a path that led to
all parts of the city, passing over each bridge only once.

After the great Swiss mathematlc.an, Euler, became court
mathematician for Frederick the Great, a delegation from '
Kénigsberg came to him with the problem of the bridges. Now

..\
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you may not thaink that such a problem would interest a great
mathematician,, but Euler gave the delegation some help with
the problem. . ~
Euvler decided that the exact shape of the different parts of
the city did not matter. It would be simpler‘to think of the
problem if the parts of the city we}e represented by points and |
the bridges by lines. . -
Let us think of another city, shown in the drawing below. The
parts of the city are shown as points and the bridges by line

segments in the figure on the right.

We can call a route from one part of tne c;ty_to anothep a
path. The path. can be described by using a sequence of letters
and numbers. For exanmple,

Al1B2C3A

is a path staréing at point A, following "bridge 1" to point B,
then crossing "bridge 2" to C, and so on.

Note that tne path described above starts at point A and énds
at point A. Also, the path tcuches each vertex, but in doing so,
the path crosses (or passes through) each segment only once. Such
a ‘'path is called a closed path. Any path which goes through each
vertek, passing through eacn segment only once but does not return
to the staréing point is called an open patn.

+
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~ Look at the drawing shown at the

~glght. The path

A1B2C3A4DSC

starts at A, passes through
every vertex and passes through
each segment only once. But 1t
ends at point C. The path
described in this sequence 1is »

an open path.
Euler asked, " Can we write a sequence of letters and numberszf“ )

in whigh each number appears Jjust once?" The men from Konigsberg '
were£§§§&ed. "of course!" They exclaimed. "After we draw the )
diagram, it 1s really very simpie now that you have explained 1t.
If we had only thought of looking at the problem in this way, we
could have solved it ourselives.” They went home and tried. to
finish the problem. Do you think you can solve the problem now?

Exercises 4-la

1. For each of the followling drawlngs, start at A and describe
a path. Tell whether the path is open or closed

(a) () (c)
A1 X c B
4 3
2 5 |3 ‘5 X |
5/ \é
7
R 4 N 0 A

b6
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2 2. Make a copy of each of the following drawings. Label the

- vertices and the segments and tell whether there is an open
- 7 ‘path or a closed path. '
2 .

. ‘ (a) (v) (c)

A A R B LA R

=

2

R A Y "_A!:.Q
)

Gy

3. Can you Jjoin the nine points snown bélow, starting at one
. point and drawing exactly five line .segments without lifting
’ your pencil tip from the paper or tracing over the same line
segment twice? '

4 Sometimes there 1is neither an open pa*th or a clcsed path for
a diagram. For each of the following determine whether a path
is possible. If one is possible, label the vertices and the
cegments and describe the path.

(a) (b) (c) () |
A

b7
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5. How did Euler solve the problem of the KSnigsberg bridges?
If you don't know, read the next section.

4.ib., The Solution

The following day the men came back to Euler and sai® "We
have been thinking about the problem, but we still cannot seem
to solve it. There must. be some simple idea which we have
overlooked. If you could just get usestarted on the right track,
we ére sure we can'solve it ourselves."

Euler replied, "All right. Let us look at the following
drawing. There 1is a path'which goes over each bridge once and
only once. How can we describe the path?" )

One of the men said, "One possible path 1s A1 B2 C 3 A &4

-

6\5MCT“\\"But there is also a

patn’ in this drawing," said

another. (The drawing is shown B
at the right.) "You car follow

the sequence A1 B2 C 3 A." l N\
Euler replied, "Lpok at these

two paths again. Examine them A 3

(@]

carefully. What comes before

each letter except the first?"

"A number," one answered. "This corresponds to a bridge leading
to the point."

by
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"What comes after each number except the last?" Euler asked.
g number, of course. There is also a bridge leading away from -
the point." )

"Uow many bridges are there for each time the path goes through
a‘ﬁoint?" he asked.' "Two bridges. We come into the point on 6ne
bridge, but we must use another bridge to go away from the point.
For each time a letter appears in the path, except at the beginning

_or end, there are two numbers for these two bridges."

Eutevr suggested, "Let us call all points of the path, except
for the.two endpoints, inner poinpts. Theﬁ.fof‘each inner point of
the path there are two bridges. Suppose the point B appears
three times as an inner point of the path. For 1nsfance, look
at this diagram, ‘

and tne path A1 B2C7D3BYE9F5B6 310F 13 H12E
8 D 11 H. How many bridges are connected to B?"

"six," answered the men from Konigsberg.
"How did you get that?" asked Euler.

“We simply multiplied the number .cf times the point appears
by 2, the number of tridges connected with the point at each
appearance." )

"Will this aiways work?" Euler continued.

"Yes, for every inner point of' the path."

)
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‘"What kind of number do you get when you multiply some number
by 22" Euler asked again.

"Obviously, an even number." The men from Konigsberg looked
at each other, pleasantly surprised. "Then the total number gf
bridges leading to or from any inner point of the path must bé
even. Anyone could see that!"

_"What about the endpoints, the first and the last point?"

They thcught for a moment. "Let us see. There 1s a bridge
leading from the first point. Then every other time the path
goes through this point, there are two bridges. So the total
number of bridges connected to the first point is oné more than
an even number. n other words, it is an odd number. The same
is trve of_the last point." .

Euler questioned them further. "Are you sure? Must the first
point be different from the last point?"

They ,smiled. "o course not. Thanks for-reminding us. not to
overio that possibility. 1If the path is closed, that is, if it
comes back to the starting point, then that point will re like any
inner point of the path. Then the number of bridges to or from
that point must be even." i , )

Euler suggested, n It might be a good idea to summarize what
you have figured out so far.

. They said, "All rignt. If the n th is closed, then th re is
an even number of bridges connect to each point. If the path
1z open, then each éf the two endpoints must have an cdd number’
of bridges. Each of the inner points 1s connected to an even ..,
number of bridges. Now that we ithink of 1t, the problem 1is abQ%
surdly simple." o

The men from Koningsberg bert over the diagram and began
counting. "The point C .3 connected to bridges 1, 2, and 3,
the point D %o bridges , the point A to bridges
, and the point B to bridges . There are

coints connected to an odd number of bridges and

points connect®d to an ever number of bridges. 1Is a clcsed ‘pat.

possible?_ (Yes, or no?) Is an-open path possible?

"y

(4
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(Yes, or no?) Such an easy problem, after all!" (Fill in the
blanks yourself.)
{ After tnanking Euler, the merry gentlemen from Konigsberg
went home. On the way,one of them said, "I dor't see why Euler
has such a great reputation. We really worked out every step
of the problem ourselves. All Euler did was to suggest how to
look at the problem and ask the right questions." His éompanions
nodded and replied, "Yes, the problem was really so elementary that
any child could have solved it."
What do you think?

/ Exercises Y¥_1b

1. (a) For each diagram 11st’ the points which are connected to
an -even number of brildges.

(b) List the points connected with an odd number of bridges.

(¢c) How many points of each kind are there in each dlagram?

" NOTE: 1II(on next page)

I1I
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2. (a) 1In which diagrams is 1t impossible to find a closed patin

which goés over every bridge just once?

(b) 1In which diagrams is it  impossible to find an open path
of this kind?

3. | For eacF the diagrams where it might be possible to have

"a path going over each bridge exactly once, lack for such a

path, If you do find a path, describe it by a sequence of
letters and numbers.

4, For each of these diagrams find a closed path starting at the
point B which goes over each bridge Jjust once, and which
goes over the largest possible number of bridges.

5. In the upper figure on page 63 there are four paths from A .
to C which go over each bridge exactly once. One 1s given
on page 63/and another 1is given by the sequence
A4 D5 C2B1A3C., Find the other two, ‘ g

4-2. What Happens if There Is a Path ?

A drawing of a set of points and bridges, in which each point
has at least one bridge attached to it, we will call a dlagram.
The points are called vertices (singular: vertex) of the graph.

A vertex 1is called even if an even number of bridges are connected
to 1t. Otherwise the vertex is called odd. A path is called
closed if its last vertex i1s the same as its first vertex.
Otherwise the path 1is called open. Notice that we are using the
word "diagram" in a special way in this chapter.

By using the same reasoning that the men from Kinigsberg
used, with Euler's help, you can prove the general statements:

Theorem 1. If there 1s in a dlagram a closed path which
goes over each bridge Just once, then every vertex 1is even. If

there is an open path of this kind, then there are. two odd vertices,

and all the rest are even.

(A theorem is a statement nroved by logical reasoning.)

i3
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g 1
Exercises 4-2 : |
|

|

1

1. In the diagrams of Exercises 4-1-b, name the odd and the_even
vertices. How many odd vertices are there in each diégram?
Dces there seem to be a general principle?

2. State a general principlé about the number of odd vertices 1n
any diagram which seems to be “{rue in all cases. Dréw five
more diagrams, and test whether Jyour statement is trie in each
case, Compare your results those of your classmates.

In any such dlagram you may classify the vértices more
precisely according to the number of bridges connected with each
one. The 'number of bridges leading to or from a vertex we shall
call the degree’ of. the vertex. 1In the figure vertex A 1s of the
5th degree, whereas the others are of degree- 3.

3. For each of the.diagraﬁs you have drawn, make a table _showing
the number of vertices of each degree, like this:

Degree Number of Vertices
1 -
2
3
4
5 >
ete, See Problem 4
How is the total number of vertices related to the numbers
in the right hand column? '

4, Call the total number of vertices in a diagram V. Let V1
be the number of vertices of degree 1, V2 the number of
degree 2, etc. (Tne numbers Vl’ V2, ... , are the numbers
in the right hand column in the above table.) Express the

\)

relation between V and the numbers V oY etc. as an

1)
equation.

5. Take any diagram. Label the bridges with numbers and the
vertices with letters. List all pairs consisting of a vertex
and a bridge connected to it. 1In the figure above pairs are

named:
" Al, A2, A4, A5, A6, B5, BO6, B7, C1l, C2, C3, D3, D4, D7 .

74
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6. In Exercise 5, in how many pairs does a given brldge occur?
How 18 the number of pairs related to the number of bridges?
Let B be the number of bridges. @Give a formula for the
number of pairs in ‘terms of B.

7. In Exercise 5, in how many pairs does a given vertex of degree
3 occur? In how many pairs dces a glven vertex of degree Kk
occur? What is the total number of pairs in which a vertex of
degree 3 occurs? ¥hat is the total number of pairs in which
a vertex of degree k oeccurs?

Q: Give a formula for the total number of pairs in Exercise 5
in terms of the numbers V], Vos V3, N

g. Give a formula for. the total number of odd vertices in terms
of V v

-

1’ 2’ v3’
16. Let U be the total number of odd vertices. Give a formula
for the number (2-B) - U in terms of V,, V,, Vs, ete.
11. Can you use the formula in Exercise 10 to prove the principle
you discovered in Exercise 27

4 3. Wwhen Can You Eg Surz That There 1Is a Path?

According to Theorem 1, i{ there 18 a closed path in a diagram
which goes over each bridge exactly once, then a certain thing is
true. This is a necessary condition that there be such a path in
a diagram. If a diagram does not satisfy this condition, namelv
that all its vertices are even, then we are sure that there is no
closed path gdoing over each bridge Just once.

Is this condition sufficient? If all the vertices are even
does there exist a path of this kind in *he diagram? Examine al!
the dlagrams you have drawn so far. ¥ind the ones which have oniy
even vertices. Can you find in each one of these a closed path

example, a diagram with only even vertices in which there 1s no
such path? -

"going over each bridge once and only once? Can you draw a counter-
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Does 1% seem as though the condition that the diagram have no
odd vertices 1s sufficient? Compare ydﬁr conclusions with those
of your classmates before you read further.

_ Look at this diagram

8
\ 4
2 $
A D
3 6
C F *

Are there any odd vertices? Can you find a path which goes over
every bridge Jjust onqe?' In fact, 1s there any path which goes
over both bridges 1 and 42 N} . '

The trouble with this diagram is that it-is made up of two

' separate figures. There 18 no use looking for a path which goes

over every bridge unless the figures are connected. We say that
a diagram 1s connected if every vertex can be joined to any other
vertex by a path. In the figure above vertex A can be Joined
to B and C, but not to any of the other vertices.

1% turns out that if a connected diagram has no odd vertices,
then there is a closed path which goes over every bridge exactly
once. We shall lead you to discover the proof in two stages.

Theorem 2. If a diagram has no odd vertices, then through
every vertex there 1is a closed path which doesn't go over any
bridge twice.

Proof: Suppose Ql is a vertex of the diagram. Find the
longest math (measured by the number of bridges in it) which
starts at Q1 and doesn't go over any bridge more than once.
Suppose, for example, that this path has 7 bridges in it. We
could describe tne path roughly like this:

, 2, 25932425379
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~

Here the subscripts simply help us name the vertices. 'For example,
QQ is the second vertex. ' We did .aot bother to wrige the numbers
of the bridges between the names of the vertices. Now suppose 98
is not the same as Ql’ Is this path open or closed? 1Ia Q8

an inner point or an endpoint of this path? What do you know about
the number oi bridges connected to an endpoint of a path? What was

assumed about the toval number of bridges connected to any point of
the diagram? Can this path contain all the bridges connected to
Qg?

If not, then there is at least one more bridge in the diagram,
connected to Q8 but not in this path. If we go. over this bridge,
too, then we will have a path

Q1Q2Q3Q4Q5Q6Q7Q8Q9

starting at Ql with 8 bridges. This contradicts our assumption
that the longest path, starting gt Qi, in the diagram has only 7T
bridges.

Since we got into a contradiction by assuming that Q8 was
not the same as Ql* then this assumption must be false. There-
fore, Q8 .1s the same as Ql’ so this is a closed path through
Ql which doesn't go over any bridge twice.

Now you are ready for the second stage:

Theérem 3. If a connected diagram has only even vertices,
then there i: 1 closed path going over every bridge just once.

Proof:  Suppose you lock at the longest such path in the
diagram. Color the bridges and vertices of this path blue. If
this path does not contain every bridge, then color 1n red all
bridges which are not in this path. We are going to assume that
there is a red bridge, and see what follows. We claim that there
is a purple vertex, that 1is one colored both blue and red.

To see this, take any red bridge and scme blue vertex P.

Since the diagram 1s connected, there is“a path Joining either ver-
tex, say Q, .of the given red bridge with the vertex P. Look at
the last red bridge in this path. Suppose it leads from the vertex
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R to the vertex  S. Since this bridge is red, then S 1is colored
red. “But thé next bridge in the path is blue. Therefore, S 1is
also blue. So S 1is purple.

Now look at the diagram made up of the red bridges, which we
can call simply the red diagram. Since the blue path is closed,
there is an even number of blue bridges connected to each of its
vertices. Since the total number of bridges connected to any vertex

. of the original diagram is even, that leaves an even number of red

vridges (possibly 0) connected to any vertex. ,
- Therefore in the red diagram there is an even number of bridges
connected to each vertex. We can apply Theorem 2 to the red dia-
gram. Hence there is a closed path in the red diagram through

the purple vertex 8. We have then a picture 1ike this:

i

Then the path PABSGHQJRSCDEFP 1isa closed path
which doesn't go over any bridge more than once. This path is
longer than the blue path. This is a contradiction since the
blue-path was supposed to be the léngest such closed path in the
diagram. ’

We got into trouble by assuming that the blue path did not
contain all the bridges. Therefore, it does -»ontain all of them.
So the blue path 1s the one we were‘looking for.

>
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( h_ 3, Hamiltonian Paths

by ‘ T4

Exercises U4-3

1. The drawing at the right is a
diagram of the Bridges of
Konigsberg.

(a) 1Is there a closed path
for the diagram?

(b) 1Is there an open path
for the diégram.'

2. (Brainbuster) Prove that
if a connected diagram has 2 odd vertices and all the rest
’%ven, then thereé is an open path which goes over each bridge
exactly once. :

When the men from Konigsberg asked Euler to help them with
their problem, they probably expected him to"write out" a solution.
Did he find a solutionr He did show them that it could be proved
that neither a closed or an.open path could be found from the
Bridges of Kdnigsberg.” In a sense, then, this-was a solution.

Are there any more such proolems? Thereiis one, “and it seems
so simple that one would think a solution could be found. Yet, no
one knows the answer as yetl This problem deals-with Hamiltonian

" Paths. Because the first problem of this type was solved by the

E;g;; Irish mathematician Sir William Rowan Hamilten, the paths
- were named after him. A Hamiltonlan path is a diagnam.in which
a closed path goes through each vertex without going over each
"bridge" more than once. A Hamiltonian path does not have to go
over gvery*“bridge" however.

YR




75 by

: The figure at the right shows
PR a Hamiltonlan path. The path
: follows the sequence of letters ' ™ D
ABCDEFGHIJ and then '
returns to A. The dotted lines
represent bridges which are not
in the Hamiltonian path. SF G
’The problem is, that a \f' i 5
necessary and sufficient condition for a diagram to contain a

Hamiltonian path is not known. One way, for a person to become

.0}

H
b o R

famous is to find an answer to questions such as this one. Perhaps
that person might be you. We hope you have lots of fun trying.

Study the figures in the next drawing Try to determine which’
of the figures contains a Hamilton path. *

380




SUPPLEMENTARY UNIT 5
FINITE DIFFERENCES

5-1. Arthmetic Progressions

Suppose we look at a few interesting sets o. numbers to
begin with, and take differences of succes8sive numbers:

; N

; Teble I T~

3 1 2 3 4% 5 6 ... n (ntl) ...

; - 1 1 1 1 1 1

N Between each suécessive pair of numbers and on the 1ine below
1t we write the difference:

. ) 2 - 1 = 1’ 3 - 2 = 1, u - 3 - 1, ;

It begins to be monotonous after a while.\ Why dld we have the
number n? It was just to indicate any number (n stands for
"any"). The next number after n would be -(n + 1) since in
this "sequence" you get each number by adding 1 to the number
before. (When we have a set of n?mbers in some order, we call it
a "sequence.") What would be the next one after {n + 1)? What
would be the one before n? You should read this unit with a
pencil and sheet of paper at hand so that yoh may answer these
questions as they occur. You may also have questions of your
own which you would like to try to answer.

There is nothing especlally strange about the differences
being 1 since one was added each time to get the next entry.
Could you write a sequence in which all the differences are 2's
.or 3's or any other nuabér? Any sequence for which the differ-
ence between successive numbers is the same every time is called

an arithmetic progression.

31
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L2t us look back to the numbers of Table I. There is a
connection w%ﬁh the game of ten pins or bowling. Look at the
triangle of dots below:

e -

) If we omitted the last 1ine we would have the usual arrangement
" of ten pins in a bowling alley. If there were just one row we
would have one dot, if two rows, 3 dots, if three rows, 6 dots;
etc. These pumbers of dots are called "triangular numbers." We .
write these in 'a table: éb

b ™ Table II

Triangular/éi;bers: 1 3 6 10 15,21 28 ...
Differences: -2 3 4 5 6 7

If we compare this table with Table 1 we can notice a number
of interesting things. The first entries in the two tables are
each 1. The second entry in Table II is the sum of the first
two entries in Table I, the third entry’in Table II is the sum’ of
the/?irét three entries in Table I, etc. The tenth entry in

Pable II would be the sum of the first\ten entries in Table I.

We %buld also say that the n-th entry in Table II (we do not yet .
" have a formula for it) is the sum of the first n entries in

Table I.

Another thing we notice in comparing the two tables is that
the differences in the second line of Table II are the same as the
entries in the first line of Table I except for the first one.

Why 1s this 80? Of course if we had written in Table II a third
ligg giving the differences for the second line we would have
had a succession of 1's @as before.

Now we could find the sum of tne first ten numbers in Table
.I-by addine them - this would give us the tenth entry in the first
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‘1ine of Table I1I, but this would be rather tedious. There is.an

interesting little trick that will glve us our result with less
effort. Suppose we form another tr*angle,of dots like that above,
turn it upside.down and fit it carefully next to the one already
written.. Then we would have a figure like: - |

1

. . . . |

In this picture we have 5 rows with 6 dots in each row, Y |
which gives 5 X 6 = 30 dots in all. Hence the mumber of dots
in the first triangle would be -% X 30 = 15, which is the fifth . . i
triangular number. If we wanted the 20th triangular number we
would have a triangle of 20 rows. If we make another triangle ‘
of dots and place it as we did for the smaller triangle, we would
nave 20 rows with 21 dots each and hence 20 X Ei dots in the
twe triangles together, which implles that in each triangle there
would be N>

)

% X 20 x 21 . -

dots. So the 20th triangular number 15 210, which 1s the same

as the sum of the numbers 1, 2, 3, ... up to and including 20.
By thls means we can find in the same manner the number of

dots in any gfiangular ?rray of this kind, that 1s, we can find

\any triangular'number. " Let us write a few:

4otn Epiangular number: % X 40 x 41 = 820

100th triangular number: % X 100 X 101 = 5050 §
120th triangular nymber: % X 120 x 121 = 7260. '
In each case we take the groduct of %, the number and 1 more
than the number. We can get a formula by 1et&ing n stand for
18
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"/?9d. It would look like this:

¢

o) | 80

the number and say that

the n-th triangular number is % xn x {n+ 1). v

Then we would get the above three values by letting n = 40,

n = 100, n = 120. Other ways of writing % xnx(n+1) are

%n(n + 1), g(n +1), or R * 1

We could also get this result without any reference to dots
by the use of an idea that i:c suggested by the triangles we drew
Suppose we wanted the 20th triangular number. Then we could take
the sum twice in two different orders:

1+ 2+ 3+ 4+ ... +17 + 18 + 19 + 20 ‘

20+ 19+ 18 + 17+ ... + 4+ 3+ 2+ 1. A

The sum of each column is 21, there are 20 columns and hence -

the sum of the numbers in the two rows is 20 X 21. The sum in
each row is one-half of this. We could do this for any number in
place of 20 and one way of showing this would be to write it ocut
usiug n for the number in place of 20 or whatever number we

Iy

1+ 2 + 3 + 4 + ...+ (n-1)+n
n+n-l+n2+n3+ ...+ 2 + 1,

The sum of each column is n 4+ 1 and there are n Icoluﬁns.
Hence the sum of all the numbers in the two rows is n(n + 1),
and half this is the sum for each row: #n(n + 1). ‘

We shall find still another way to get this sum in the next
section. ’

Exercises 5-1

1. (a) Wrlte the first twenty numbers in the sequence starting
with 15 for which the differences are all 1's.

(b) Write the numbers as 1% + 1, 14 + 2, and so on.

~1 3
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(c) Write the sum.by writing the 14's first and then the
others as: 14 + 1% + ... + (1 +2+ ...) »

(d) This can be written as: (2 -14) + (5 -20-7)
(e) The sum written with one numeral is

Follow the procedure of Problem 1 withsthe sequence starting
" with 142. Use ten numbers in the sequence and the difference
of one. {The answer for (e) should be 1465)

What 1s the formula for the sum of the first n numbers in a
sequence with the difference one? Let us agree to use b for
‘the number that 1s one less than the first number 1n the
sequence. ‘

Write a sequence of numbers for which the difference 1s always
€. Begiln with 13. What would be the sum of the first 20
numbers in this sequence? Note that (2 + 4 + 6 ...) can be
written as 2-{(1 +2 + 3 ...).

What is the formula for the sum of the first n numbers 1n a
sequence with the difference 22
A

Ccnsider\the formula: ©2n + 7 (remember that 2n means
2 xn). When n=1,2n+7 is (21} +7=9; when n =2,

on + 7 is (2:2) + 7 = 11, etc. We can form a tablie of values:

n: 1 2 3 &4 5 6
°n + 7: 9 11 13 15 17 19

Carry this table out for the next three values of n. Use
the numbers 9, 11, 13, ... as the first row of a table and
then .write below this row a row of differences. Do you notic%
aﬁ& relationship between the formula and these differences.

Do the same as in Problem 6 for the formula 3n + 7/ and
for 2n +.6. ’

What would be the differences for the numbers defined by the

formula 5n + 77 {

8
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9. Write the first 20 odd numbers. Can you find their sum with-
out just adding them? Can you guess what a formula for the sum
of. the first n c¢dd numbers would be? Use either the trick
at the end of Section 1 ur the answer to Problem 5. .

10. @Give a formula for the sum of the first n - 1 numbers in
Table I.

11, PFind a formula for thé sum of the following:

1,1 +d, 1 +2d, ..., 1 + nd.

12. Give a formula for the sum of the following:
1, 1 +d, 1 +2d, ..., 1 + {n - 1)d.

13.. Find a formula for the sum of the same sequence as in the
previous .roblem except that 1 1s replaced by b.

14. Suppose the first two numbers in a table are
7 and 12.

Write a table starting with these two numbers for which the
first differences are 211 the same, that is, in which the
numbers on the first row are in an arithmetic progression.

15. Write a table of numbers in an arithmetic progression in
which the first two entries are 7 and 5 1in {.... order.

16. If you have any two numbers insteid of 7 and 12, or 7 and
5, could you make- & table starting with the two given numbers
in which the numbers of the flrst row form an arithmetic pro-

gression? Give reasons. ;
N

5-2. More Sequences

Now form a table of the pquares of the integers. Recall that
the square of 3 1is G since 33 = 9, +the square of 5 is 25
since 55 = 52 = 25, etc. We call them "squares” or ".quare
numbers" because if we wrote our dots in squares instead of

B




83 ' 52

triangles, as previously we would have the following sequence of-
squares:

, Table III
1 4 9 16 25 36 49 ...n® (n+1)°
3 5 7 9 11 13 ... 0w )
2 2 2 2 2 .o 2 1

Notice that the numbers t:re in the second row are in an arith-
metic progresslon and that the differences in the third row are

all 2's. We call the numbers in the second row of such a table
"pirst differences" and those in the third row "second differences.”
What would be the n-th term in the second row, that 1s, the entry
where w 1s? (w stands for "what.") This should not be hard to
find since it is the difference of the two numbers above it. It

is just

| (n]+ 1)? - n2. |
i ’ ’ -
Before getting a2 simpler expression for this difference of two
squares, let us see how it goes |for some of the numbers. Just to
j write 36 - 25 = 11 1is not especially enlightening. But suppose

we write it as
62 - 52 = (5 + 1)% - 5°.
If #e use ghe distributive property several times we have:

(5 + 1)° w+1waﬁ>=as+n
(6:5) + (6-1) = (5 +1)-5+ {5+ 1)1

52 4+ (1-5) + (5-1) + 1
52 4+ (2-5) + 1.

i
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(Try it and see.) 5 or 6 or

whatever number, we have

So, putting n 1in place of

5‘9 8l 1
And thus ‘ o 1
62 - 52 = 5% 4 (205) +1 - 5% = (2:5) + 1. o

In just the same way we could show that %
72 .62 262 + (2:6) + 1 - 6° = (2:6) + 1. I

5

l

(n + 1)2 -n°=n®+on+1 - n° = 2a + 1.

We could write this in words:
squares of two successive integers 1s 1 more than twice the
smaller one. For instance: 1212 - 120 = (2-120) + 1 = 241,
This is a much simpler computation than squaring both numbers
and taking the difference. This can also be shown using diagrams
of dots In squares, but this is left as an exercise.

This shows that the last entry in the second row of @able 11T

Thé difference between the i

' should be when n is 1,” 2n + 1
is 3; when n 1is 2,

The numbers in the

If you look cafefully,

2n + 1. We might check this:

2n + 1 1s 5, ete.
second row are in an arithmetic progression.
you will see that each number in the first

row 1s 1 more than the sum of the numbers to the left of 1t in
the row below. Why 1s this so? Another way of saying ‘this- is that
the fifth rnumber in the first row is the sum of the first five

" odd numbe s, the sixth
first six odd numbers,
20 odd numbers? What

We can use this to
n counting numbers in
the (n + 1)

(1) 1 +3+5+7
Subtract 1

(2) 3+ 5+

number in the first row
etc. .What would be the
is the. sum of the first
get the formula for the
still another way.

odd numbers

+ ...+ (2n + 1) =

is tﬁe sum of the}
sum: bf the first
n odd numbers?
sum of the first

Start with the sum of

2

O 2
(n +1)° =n° + 2n + 1.

from extreme left and extreme right.

+ {on + 1) = n? + on

ke
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) Notice that 3 1s cthe value of 2n + 1 when n =1, 5 is
Z the value of 2n + 1 when n = 2, etc. Then we can write the left
\ side of equation (2) as follows:
) ((2-1):+ 1) + ((2-2) + 1) + ((2.3) + 1) + ... + (2n + 1)
%ﬂ,»4rf;-I£jwekwrité this in a different order, using the commutative
property, we have
' : 21 422+23+ ...+2n+ (L +1+1+...+1)
;. \ .
/ where there are n 1's in the parentheses. Then, from the dis-

tributive property, -this can be written
2(1+2+ 3+ ... +n)+n

If we substitute this for the left side'of equation (2) we get
the equationE ‘ ) . "

2(1 + 2+ 3+ 4..+n) +n=n°+ 2n.

\,
Y

Subtract n from both sides to get

2(1 + 2+ 3+ ... +n) = n® + n. .

Finally, if we divide both sides by- 2 we have

1+2+3+ ...+ n= %(n2 +n) = %n(n + 1)
which 1is the formula we had before f%F the n-th triangular number,

This is, of co ~se, a much hadder way to find the sum of the
finst n counting numbers than by the other methods, but it does
suggest a means of finding the sum of the squares. Let us try to
find the sum cf the squres of the counting numbers by considering
a table of thelr cubes and the differences. Try it. .

Table IV
1 8 27 64 125 216 . nd (n+1)3
T 19 37 61 91 e W
/ 12 16 24 30 ... ‘ /
6 6 6 |

84
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Notice that here it 1s the second differences which form an
arithmetic progression and the third differences which are all
the same. .

The second row should be connected somehow with the square
of the counting numbers. To get a clue for this connectlon, we
must determine the formula for the last term in the second row,
which we have called w. This is Jjust

(n + 1)3 _ nd.

A

Observe that
(r + 1)3 =(n+1)(n + 1)2

2 ron+ 1,” so

We found previously that (n + 1)2-= n
(n + 1)3 = {(n + l)‘(n? +2n + 1)

n-(n®+2n+1)+1(n°+ 20 + 1)

n3 + 2n2 + n + n2 + 2n + 1

n3 + 3n2 + 3n + 1.

Thus -

3 2 3

" (n + 1)3 - n" = (n3 +3n“ +3n+1) - n” = 3n° + 3n + 1.

To check this, let us form a little table of values:

n 1 2 3 4
30 4+ 3n L 1 7 19 37 61
which checks with the‘seand row of Table IV. .

From the this we are now golng to work out the follbwing
formula for the sum of the first n squarés:
s = 2n3 + 3n2 +n
, )
If you figd the algebra too difficult, you can Jjust sssume the
formula and go on to the exerclses ifter checking the formula for

a few values of r
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To get the formula first notice that in Table IV,
8=1+7,27T=1+T7T+19, 64 =1+ 7 + 19 + 37, etc. Each
number in the first row after the 1 1is 1 more than the sum
of the numbers in the second row and to the left of it. That is,
{n + 1)3 is 1 plus the sum' of the numbers in the second row
through w, which 1is 3n2 + 3n + 1. Hence we have the following

equétion:

(3) 1 +7+19+ 37 + ... +.(3n2 +3n+ 1) = (n + 1)3 or,

(%) 7T+19 + 37 + ... + (3n2 +3n+1) = (n+ 1)3 -1

From our work above we see that the right slde of this equation
is equal to

3

(n3 +3m% +3n+1) -1=n + 3n°

+ 3n,

and the left side ma, be written using n =1, 2, 3 ... in
3n° +3n+ 1 as

(3‘12 + 31 +1) +
(3-22 + 3.2 +1) +
(3-3%2 + 3.3 + 1) +

(3n° + 3n + 1).
{
Notice the squarec of the‘number# from 1 Jo n in the first
column and the-numbers from 1 to n 1in the second column. The

last number in each line is 1. So if we add by columns we have,
using the distributive property:

f

|
3 X (12 r2°2+3% 4 L4 n2) + j
3Ix{(l+2+3+ ... +n)+
(L +1+2+ ...+ 19,

where in the last line there are n 1's. We have called s the
sum of the squares of the first n counting numbers; we know that
the sum of the first n integers is %(ne + n) and the sum of the
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n 1's 1s n. Hence the expression can be abbreviated to-

3s + 3-%(n2 ¥=n) + n,

" which is what the left side of (3) reduces to. If we equate it

to what we found above for the right side we have: “
3s + nsé-(n2 +n) +n =13 + 3n° + 3n

or
3s + %ng + %n'+ n = n3 + 3n2 + 3n.

H

Since %n 4+ n = %n 3s + %n2 % %n = n3 + 3n2 +.3n,

Subtracting %nz +ugn Zfrom both sides of the equal sign we get

3 3.2 1 2.3 3.2 1
38 = n~ + 30 + G or B j/zg + §n.

Finally if we multiply both, sides by % we have the formula

which 1is what we stated above.

You should check this for the first two or three 'values of n.

’ ) Exercises 5-2

|

1. (a) Usihg dots arranged in square patterds;as shown at the
beginning of this section, show that' (5 + 1)2. 52 =
(2:5) + 1.

(b) Using the same idea explain how to show that (n + 1)“ -
n® = 2n + 1. We can show (n + 1) dots this way

n + 1 |

S\
/ N

!
2. Find a formula for the sum of the squares of the first n

even integers. (P-gin by writing these squares as
(2-1)2, (2:2)%, (2-3)%, What is the n-th number
in this sequence?) 0/
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3.» Find a formula for the sum of the squares of the first n odd
e integers. (Begin by writing these squares as (2-1 - 1)2,

(2.2 - 1)%, (23 - 1)%, ... . Notice that (2k - 1)% = |

“o4k® - bk + 1 for k=1,2, 3, ... ) '1

' |

I

|

|

~}:‘w~;xl'<5n ntﬁ,;,
o 7

L. @Given the numbers 4,'7, 12, can you form a table beginning
" with these numbers in which the first differences are in an
arithmetic progression?

RPETRARET T Y

TR I AL TR e g N N IR SR S e
//rl“'wmmmw g S
P

5. Answer the same question .as that in Problem 4 but with the
aumbers 4, 7, 12 vreplaced by 10, 5, 11 in that order.

6. Given any three counting numbers, could a table be constructed
’ having the given numbers as the first three entries in order
and for which the first differences would be in an arithmetic
progression? Give reasons for your answers.

*7. Find a formula for the sum of the first n cubes of -counting
' numbers, that is, for 1, 8, 27, 64, etc.

N -

5-3. Finding Formulas that Fit

By the methods we used in the previous sections we could find
formulas for the sums of cubeé; fourth powers, fifth. powers and so
on but the computations and algebra become more and more difficult.
It 1s time we Fnied something else. |

We can use scme of the same methods to find formulas to fit
some tableé of vaiues. Suppose we had the sgggsgpe of numbers:

2 7 11 15 - 19

.and we wanted a formuli: that would fit‘these values. We could
form a table and take th» first differences

} Tahle V
J

3 7 11 ' 15 19

4 4 L i1
¢
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These differences are all the same, that 1s, the numbers in the
" first réw are in an'arithmetic progression. (Of course the next
value might not be, but we are only trying to find a formula which‘;?
fits the given vlaues.) From this we might guess that the formuls
. for the numbers in the first row would be of the form: b + an ~
for some numbers‘ b and a. Suppose we tf& it to see if it works.

Then the n-th and (n + 1)st entries would be

|
1
|
|
ro b+an and b + a(n + 1) ' ‘!

and their difference would be !

b+a(n+1l) -b-an=b+an+a-b-an =a

which is the difference. Since all the differences.are 4, it
- follows that a must be U4 and our formula becomes

b + 4n.
Now when n is 1, b + 4n must be the first entry, that is
b+ 4 =3

which means that b must be '14 and hence the formula seems to
be )
bn + "1 or 4n -1

" If we try this for various values of n we see that it works and
this indeed fits the five entries in the first row of the table.
Actually we could see that this jould have’to work if the ;
numbers are in an arithmetic prognei ion, once we have fixed D
so that the first entrj'fits the formula; for, whatever b 1is,
t

the numbers in the f{ir row would be

b+ U b+ (2-4) b+ (3-4)

"and the differences are all 4's. _
Really we have proved more than we set out to do. We have
the
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Theorem: If the first differencéé of a téble of values are
—-_ 1y
all the same,'call them a,  then the numbers form an arithmetic
progression and the formula for the n-th term is

b + an

where b 1s so chosen that a + b 1s the first number in the
table. .

By means of this theorem we could get a formula to fit any -
table of values in an arithmetic progression, that is, in which
the first differences are all equal. What about tables in which
this is not the case? In order to explore this, suppose we tesﬁ
the tables for a few formulas to see 1ii we can make some guesses.

’ Table for n(n + 2) = n® + 2n
n 1 2 3 4 5

n{n + 2) 3 8 15 24 35

first differences 5 7 9 11

Here the first differences form an arithmetic progression.
(You should check these values and compute a few more . )

Table for n{n + 1)(n + 2}
n 1 2 3 h 5 6 ...
S n(n+1)(n+2) 6 24 60 120 210 336 ...
First differences 1 36 60 90 126 ... [
Second differences . 18 2% 30 36 ...

Notice that n(n + 1)(n + 2) 1is the product of three succgssive
integers beginning with pn. Here it is the second differences
which are in an arithmetic progression. This would give us a
way of computing the values of n(n + 1){n + 2) successively,
assuming that the second differences Ere in an aritmetic progres-

sion no matter how far one goes 1n tq table. For instance; the

next second d*fference would be 42 = 36 + 6, the nex$ firs%

> i)
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A " difference would be 126 + 42 = 168 which means that the next
; . entry in the line above would be 336 + 168 = 504, To check

. this we see that 504 = 7 x 8 x 9. (Notice that every number
after the first line in the table is divisiblé by 6. Why is
’ this -80?)

; Try one more table:

\ 7
£ Y

~*. Table for n(n + 1)(n + 2)(n + 3)

n 1 2 3 4. 5 6

n(n + 1)(n + 2)(n + 3) 2h 120 360 80 1680 3024
First differences -56 240 480 8to 1344

Second differences 144 240 360 504

Third differences 96 - 120 144

Here it 1s the third differences that are in an arithmetic progres-
sion. Notice that every number after the first row is divisible
by/ 24. Why is this so?

Before going furbher,\you should try out a few for yourself.

Exercises 5-3-a

1. Find tables of values for each of the following formule.
and compute first, second, third differenceﬂ:

(a) n® + 3n + 2 |
3
(o) 7= | :

(c) n® & n

1 u ,

2. Suppose you computed a table for the formula: n - n2 and
computed the first, second, etc. differences. Guess how soon

you would come to an arithﬁetic progression. Then check it

to find out. 4




'

We call 1 the first penuagonal number and 5 the ‘next ',In the
ext pentagon there will be 3 dots on a side and we add ‘chree
des with a total of 3+3+3-2=7 dots. (ﬂessubtr{ct 2

for the vertices which we have counted tiice.) 'I‘he next tig
wer would add M4+ ¥ + 4 -2, cr 10 " doks. -Each time we qL d

threg more than we did the previous time. In this v/ay we g;et the
) following tabie of pentagonal numbers: - - . .

T Table VI
1 5 12 22 35

first differences . % 7 10 13

‘sec»ér';d' differences 3 3 37 ' e




>>>>>>

».a_,.ﬁ e

1c’h Would fiﬁ” this a’ble

fonmu 8, wh

Py

pnoper'choice of the. numb?rs a, ,b, éné’ ¢. Let us see ;::;;
is will fork out. Then the-n~th and (p + l)st‘terms would be
‘4 , - . ) L ;

ah® + b+ ¢ and a(n ¥ 1)2 + b( o l) + N ‘f

‘heir aéfference would be ‘ o Los s *(
S ’ - , 2 ‘“"f S
yoalin £ 1)2 - n21.+ b@(n + 1) /n] £ 1

¢ dyy .\
¥ ,eady found that (n B3 l)2 - na” r

-2 ¥

O

%hesemdifferences are all 3. Thus ‘ T 5
formula for the first difference in the table must be én + (Q
and (§ + b) - must be 1 to have 1t give the- nnmber 4 when

n =1, S0 we have §»+ b = 1 and b = (g)

B ~ Hence the. fornula for the numbers in the first line of Table
VI, the. pentagonal numbers, should be k

- -

0.%n2_;2_i,1+c Y, . - -

>

for a proper choice of c. Putting n=1 in_yhe‘fofmnlé.and
setting 1t equal to the first entry, 1, in the table, we get

1= G re=1%e - .

-

 which shows that ¢ must be zero. So our formula for the n-th
terin in the first row of Table -VI seems to be i , .
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e LT - 3 P,
R : Ha T} . ! a
- 5 A ks
3 95ﬁ . . . fi

Vd‘trying valueepfor n willkshow you that it doee indeed fit
'ﬁﬁore 1t has £0 fit since whe, first difxerences are fixed
heyv”etermine the entries -on thé firs& line after'the fifst

-~
a
.

S~ Exercisesas 3= b 1: RSP

CAPIN mE we VRS

rmulas which f*t each of fhe fcllowing tables of v&lﬁééi'fl

‘,\

5. 19 3 7 12 & o
3 26 38 62 -.92 R
What kind of & formula do, you think would fit the following -
table of values" S R o 4‘:ai?:j

2 1o 30 .68 )"1-3,‘01, 222“ "i"-« Do e o

.

N

Have you ever noticed cannon ba;ls biled in | riangular

eramid on.an “old battlefie1d° Theve ‘might be ¢

with 3 in a trianglewgg%ggeﬁpotto"

- glving L in-all. If thére were Thr
on the ground‘would have 6 plﬁs tne four avae

10, If there weré four uiersh there WOuid be ﬂlO””’,. He

:,bottom with a total of 20 in the pile. These humbers are'
called pyramidal numbers and are ’ - ¥ 8 ‘

‘7

' l u‘ . '10 20‘ . 35 we-e . ’ ‘7‘/, - ' ,:" |

-

~:Can you~discover any relationship between them and Lhe tri--

Suppose there 1s a tébie of values in which ‘the third differ-
-ences; form.an arithiietic progression. Tan you gues -what gort ~

of a formula wbuld flt the numbers of the table? “

- angula numbers° i . ] ,

v




14

Six %3, dhix ,

e erainn -w._ e -4

4=01+3+1o, ste; . Tl

tice uhat the numbers 5. and 14 actually need to: have
three triangular numbers in the sum The,theorem also says
that gvery integer which iS>positive can be expressed as*the
,sum,of four or fewer square numbers, five or fewer pentagonal -
k;numbers, etc. You might be interested 1n trying this>out- Ther'f"
“oa is veryfdifficuit.\ . i’

“ . R R

p--; -

,,,,,,,

’?~,(a) 2 .g?‘_“ 23

(b) 1 L 2 3 5.8 18

-]

'll.v‘, o

v where in the oecond*sequence each number is the gnm of the
S previous two. Show that no matter how many differences

you take, no set will form an arithme%ic progression.

7. We know from: Problém -13 in. Section 1, tnat aﬁy two given
VAnumbers may be used to sﬁart an arithmetie progression. Why
Adoes this, show that no matter what two numbers you may name,
I can find a formula 1ike' an + b, which has these two numbers

a8 values for n = A and h o= 29 . |

[ AP ~
N . %

8.  Look at Problem 6 in Section 2 and see if you can answer the
L following question: Given any three numbers, Can we find
a formula like

<

¢ an2 + bn 4+ ¢ ‘ )

;ﬁhiohﬁwill have the given numbers aé'velues when n = 1,
n .= 2 n = 3? ) -

i ~

9; Yhat kind of a formula do you think would £it any set of four
values? Can you draw any general oonolusions?\

100
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rofessor Raphael M”

.«e—.

- rﬁeley, in October, 1958 issue of the

bme idea of
°9mputer$:to
g " r:‘, CN -

«numher T is prime. \ 1 )
w“\must £ind out whethér n 1s divisible by~some Bia]

other than 1. The most obvious method ig to divide
n ;bers 2 3, My e n - £ of
:divide evenly inte n,

,stl(

We could shorten‘the work very much if-we think ﬁjlittle. If':
is*notga prime, then n can be expressed as a product of two ‘

”er nuﬂ%ers.)¢ Wb ';‘
T I A= abe. . - - o

~1s the gmaller of these factors,-then n’ is dat least

*

-

" " n>a®,




0 i; if n 1is nob a prime, then it is divisible by some r
> ‘et,whose square is at most. n.. To test wheﬁher n  is

e, it is enough to divide1 G0} by the numbers 2 3,7;y3y,
'If

<

ﬁh'é‘ri" 1,Aooo, qince 1, ooo?, = 1 ooo,ooo

RN

001 of a_second, how many years woulérit.take by %his method to .
~test whether n is: a prime? B ,L:w-a»m\ . fa:m;?\
If we wish: to test really large number 83 we must 1ook for i )
better methods so- that. we can obtain the answers ina reasonable
time. Tnerefore, mathemq?icians try to &ind s:eeial classes of
numbers which ‘have special properties which enable us to 1educe
theﬁwork even more. ’ . ~ BN ,‘,,,_;
For example, a great deal of- work Has been done on numbers ,
which are {rie. less than & power of 2, We‘may represent suoh a

L5 -

?1xnumbers in/thé form : ' ’ Y EQA:‘

‘;4 T . L - ° . . .\: N ".;':\

NI w2, then nu= 22 ~1e%-1 =3, which isa prine. Ir .
om= ‘then n=2' 2116 - 1 =15, whidh is not a prime. If

‘ ,m 1s not a prime, then n cannot be a prime.' But um may be &

‘pr;me withou@ n . being -a prime.

e oss

P

.

% Exeroises 6:1 R s

v ’ R s . . -

. :xg ¥Make a %Lable for n = = 1y up to ‘m = 20:
T VTl Y sl o] e
ooelbadsbebastal TLTD T

"
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. Robins?n repor’cs on numbers which are one more tha.n a
,umbers}of the ot

m wj.th k < 100 a.nd )m ;‘ 5-12
:‘st they divided by all numhers 1e /;g
k< 7 ,thew tried divisors up. to 106,0“00.

et -.

Y
l

o k= 53 7: 1—‘-:‘? A A
=1, A‘ 2:-\ 3?: b, 5; 6,“1, 7; ‘-“j .“ﬁl’ » i :‘4;
test the numbers oy (k 2 ) + 1 for primeness.
n, Prothls’ theorem stateé ..tha'c

=3
il

- -

n is prime if and only 1f —it ﬂs a factor 01

. ’ : . nfl C ' .. @




Does\this look mysteriousato you° It is. 1ike1y that it does, j N
because you. are not.a mathematician. It would very probably 1ook
yst¥rious -even to a mathematician if he didn't hap pen to be

_amixiaf with theé special techniques which are needed for;a proof
o'fthiSeparticular theorem, If you will aocept,;however, ouﬁ*worﬂi

“

S that 1t is a true theorem {and a great many very respeotable
»—mathemabicians w111 testifx,to its peing true) then it should not

be hard to sée what it s z and hoW it 18 used S ’
1@/ ‘ ' ‘ . -1 . LT

Intthe first pldce; what. does 3 é;le i\\meanz‘ ThesexpresSion

¥

- ., . Y
—§$ is being used a@S-an exponent. The}number=rn we ape. usingﬁhere v

is oddv (Mhy? What,is the form of 1?) Thus n = 1 is: even;
A=l - .
8o tha# —§~ is a counting number. Thus é?ﬁf + 1 ,isfjusﬁ,one,
more than 3 raised to a counting nunbeér power. To test “n-aféf',”* ,
primeness we need only £ind: this. number and then &ivide“i‘ by n. . :f“

If this div181on cqmes out even then n is 2. prime, otherwise

L4

n: i§ a composite. . -
Nhat ‘numbers can we test for primeness by this method°‘ Let us

1ist a. few of” them in a table and then apply the test to some- of

them.  Fill in ‘he&blank spaces in the table on the following page.
Remember that Proth's theorem requires that 0 < k < 2m ‘and that
we have restricted oufselves to numbers k which are not divisible '

by 3. .

-

[ .

e VY i e e e S
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ll"*-&-1 81+1

/ L . ?

: oo "I'he dd ision does. not ome, out ;even,,sO the. test tell
Vbl;:at 9: 13 no*c a pr:ime. \Qpeé this check 'with wha{ yqu already i

*‘l‘z
® s BN

| I‘L“

n

If k ZL and m = 6 then}wha /’18"’1'1"” o
65 If it doés notJ work it ’ou’c '

g

g«.

.

We would 1.have to divide this number by 65 to con’cinu oy t

K

f ;It would not be worth the effort s how*e’ver, since we‘, can _'asiiy

Iy

Ele 4 Let X ; 7 LR
n: . R N 3 T ,"” ;- ) : N - : : = ,: ‘r' -
” “113, In this case the numbep 3 Cl /66 + 1 is 9 times the

T

' j*may calcule.i:e this number and div,ide :Lt by 'n -w113* ,T:héi

sgu e, of 1;853, 029,188 851,842 plus 1. If you, -are embitious

‘.you conclude abou‘b 1139 , S C e

= < - .,,« B
’ l‘f.

Examples 3 al;; 4 should convince us O" one thing. ,r«’Proth's
theorem 18 not /Well suited for testing 1arge nugpers for primeness
by° hand calcu/lation.

expressly to- make calculations of ’ch{a order of the ones which dis-—

»aged 1}8 .above:. . And they -do them qu:tekly' On the SWP.C the .

lti‘me for“ the test was no more than l-lé- minutesﬁ‘ ag long as m< 912

I, 7abou’c 1000 and k = 3, 5, or 7 the tést took about_'

7 {mi utes ; 300

Ehgrest




‘\' s

; grggg{e 7 “minutes wli:h the time it would take the machine ‘bo test
ifg:y ;p;!i@éngss by trying all ‘ﬁossi]ple ;‘actorS* Earlier in.

*7A°‘Ehis section ,you got .Sone idea .of this time for numbers of ‘bhe
’,!.»order 9f ) / T . \Gim;'}ﬂ?' ;
‘ Qr( k = 1 ’che test had previously been carried out for a.ll o

.' T . *
- s ; @ "‘, ‘o R

) \ o : '2 - TR Y -
¢ W ' i* - S LA S .

ms0, 1, 2.4 5’;3 and /465 T

. . B . / ! E
The largest new prime discovered bJ thfa work is ’che case- ’ ’
: 15;m 19)4,7 . 7. oL, , ’, ‘ MY
RS TOUTy ERRRUTE S
L. ')h'“ ro- (5 2 ) ’F l- : -».:HL_ _“,‘Oi’fiv,c ‘
L IR gou wish to estimgbe this number, first ‘notice bhgt i
oL 10° = 1000 < 2% wzu ‘:;_; oA
_ »Thierefore wWer have . SU e a; ‘
i 2194{ 5 2:L_940~ A felo)w“ (103)194 10582 -

. f'.[‘hereforq n has rmbre than” . 582 Jigi‘bS’ On the\hther hand
,‘otice ’chat Lo . . e
il"’/ﬂ ° 2= 8eg9b ¢ 40T, . 0 T T L i
ALs T o, A e N ]

‘Thergfore we have e S

: ‘,“( —,.* ‘ R n &1 + (8 P1947) 1 + (2 19:57) o -_17

Ged o emaeaO N eyl T L

Fielan o e +:(101?)15°“ T N

+

: ',: Consequently n has Ho more than 600 digits.
Remember that ‘by using the theorem of Proth, this prime wés
discovered by a single division’ ‘caking a matter of, minu’ces.
nsing either of the cruder me{;hods discussed ‘baforé at ieasb
10291_ divisions would have been. necessary. How 1ong would this

_have takbn at thei‘f'ate of a thousand divisions per second" -
Jgﬁ R P
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t ‘f‘- « - “ ) 0% _’ M ;,7 * A - ~;;:"
< l !l:,»‘ B ” . : * ., - '*.:‘
. \ &> "”f'-.: .
umber§ s %he fourth 1argest prime lmown at present
% $ha . Lo s e
rger ones are the. numbers A !‘fag , - R B T /
- "" * e * . .4 . ) ‘ 1. b f_. i ! HE
- :“ : N ? Lt -“’— . -, I ': ; . 7 ; : ; ) ‘;t - .
P : B R

Witk 3217, 2281, and 2203, The. labter two, were-,,reported o
by' ‘;-ﬂ_obinsdn in the Proceedings of the: }American Mathematical Socie‘éy
in 195&,. ] Tne large‘st one. was re‘ported early in 1958 by H, Riesel
in Ma’chematical Tables and ‘Aids to Computation ( \'60“) L

T R o ST E AR R
v e'-' s s .:,_ e ™ X SRR i
, .Example 5: »gg,f\;;..,me,ge the. ,..u,,b,. of dia:i‘bs 5Leac1 Qi‘ three . s
Y ‘ ’ X J s \L"\’ N

;«'I" ‘ N 'R e A ) )

_ *gerhaps you would, be 1nterested in the general statement of ?'! ,,
- Proth‘s theé'rém. Forvpumbers. n = (ere®)+ 1 with % divisible \ ‘
by 3 the important ;iifference in the test for primeness *1 ;’chat
oo : I I B ‘ O\ r.;-f"*\
K i;h.e number" 3 2 + l muéfc he :ceplaced, by a ne;: n\, ‘nber. ‘_I‘henumber o
to nse’ 13 of the form : ) R ‘i,\“ R

. where e 1s a counting number which ma§ have to be chosen differ- -
entiy for different values of k. and' m, . -The €0} dibion‘ which 8
*nust sati sfy will be i‘ound in the s‘catement of Pnoth!s \theorem.
B o - 3 .
o .Theorem.' Let 0<k<2m and n (k 2m) +1 pose a - ’*'»'»,
:ls a counting number which has the property- no «sum of a aind a o
ﬁml’ciple of n 1s a perfect square. (Al‘ternative. the sun nf a .
and a multiple of n is never a perfect square )

'J.‘hen n isaprime 1f a.d only Af 1% 1safac or of . .~ -
ad .

- . . ,5 R n-l ‘ _ ] l‘\ « )&\ . ‘, ‘ s
: A a'ar +lf' T ' RS
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iﬁ’ukg= 3, and m = 2‘ S0 that n 3 2? 1 = ld then

e 8 =¥ do? No, because 117 + a'= 117 + 4= 121 s a
; ‘rﬂechsquane, and 117 is a multiple of n = 13 no find a

‘éumben a wbich we can be sure will fit the condition for a given
‘we will have*to use reasoning Ve willgpave to. reason ) -
: Tunmber a,' no matter hoﬁfﬁgiy multiples of M o
*;ﬁ%'ﬁﬁW» adding A Wikl never.give afperfect square. Mathémati-
"ians.know eriough absut numbers. 80 that finding Such a humber 18
v.»noﬁ'@ Very difflcu}t problem. As you may, have guessedéfrom.the i
; \Wdiscussion above;y it is possible £o show that Whenever k18’ no°
3 divisible by 3.  the number a =3’ atisfies the condition of ‘the
_hheoremi Once,we ‘have. found The right number a to go wifh n_ we
:.can avoid the any. tedious calculations necessary to uest a Barge y
,a"w umbe; for primeness. Instead of dividing n by a11 prime numbers

'\;whose squares are less than n, we need only perform one calcnla—

Ty S

Wé sinply try the division . -~ . ¢ & \ﬂ L, -
: . » . . ; ‘~' R 3 i "': ‘ /‘»
JERTECR (@ ® +1) +n; . : S T

. ’ T N * ~ - 4} L. . e . » “'
~comes out even n is a prime, if not, n is not a prime.
« . . . . v . - \\ . . " ) - 3 3
. ' ’ ) A .~

¥




Sroa T\ SUPPLEMENTARYNUNIT 7
o * Ny oS T
gwould you say if you were asked hovw a war, a busaness,
There is at 1easﬂ one similarity. In each

-someone»is constantly making decisions. Officers in’ the

Many decisions are made b} the n1ayer of ‘a game.‘,k
bujinessman.mnst make oecisions 1n managing nis‘business. Can.

PR

'Houl be, where 1& chouiazpe;

_Besearch Institute and asked t &
these decisions. The mathemaéacians h51ned him figure out what

decisions ‘to make in o¥der o make tne biggest prolit.
Game(theory is & new branch of mathematics. Game theory can

s bekused £0 determine the beat strategg to follow in making a

= s

::xdecision. John von Neumann invented game(fheory in 192§~ He

-

applied these 1deas to business decisions and game st”ategy. You
will first learn how to use game theory. An. finding ﬁhe besﬁ Sorat—*

egy’to follow in a game.

~

L fr’il Strategy

What is strategy? Strategy is 2 plan you follow to gain some-

thlng you want. Usually, strategy means the plan for a coming

s bautlevin a war. We will use the word strategy to refer to a plan
O ’eading to any. decislon. Strauegg will mean a complete plan-that

o cannot be Lpset by "enemy" action or Nature. Your opponent is

your »enemy Let's talk about strategy in games. The first

group -of". games will bte very simple. . N

110 I
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Each boy wants to win,
He must be careful or he might be Tooléd by the other

Tbm and Jim are going to play a game.
of course‘

?ﬁoy“ nhese are the rules. )

W Each boy writes on ‘a piece of paper elther the letter "A"
or ‘the letter ngt ithout,letting the other sée. Then
they compare what they have written. '

2. If both wrote A, Tom wins 6 points.

If both wrote B, Toméwins I points. ]
If one wrote B and the qther A, Tom wins 5 points.
3. :After six turns, the boys change roles and Jim receives the
points according to Rule 2. ’
Y

The winner is the boy who has the most points afte ach
boy has had 6 turns. )

) The following diagram, called a payoff matrix, shows the points
. for each combination of ways in which the letters could nave been )
written. (A rectangular

arrangement of numbers is

h ©

called a matrix).

for the column

>

>

) . Jim's Choice Minimum payoff, . i
A - . B for’ the row. — “
/Tom,_-)s — A- . 6 5 | 5 ) i
YChoice : B | 5 b ¥ :
‘Maximum pafoff | g 5

7~z;I'h~e
win

.
-tne

the

choices.,

wr"iting Man ‘

number in each box shows the nnmber of points that Tom will
‘for each combination -of choices. - '
Example: Tom writes "B and Jim writes "B
will allow Tom as few points as possible S0 Tom must determine

- 4 points.

smallest, or minimum payoff he would win for each of his

e write the minimum payoff to the right of each roy of
The minimum number of points Tom will win by’
The minimum for the choice "B" is 4. We

payoff matrix.
is 5.

——t .-
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}.see that the minimum payoff for A" is greaterlthan"the minimum
1 iﬁpayoff for "B'. ”&Tom will always win at least 5 pdints‘by‘wriﬁ-‘
': "'f'ing“ a A" : = .
_A“: For each ch&ice by Jim there is a certaln greater, o} mamimum,
:;“payoff for Tom. Jim will try to make Tom's payoff 48 small as
g;possible, but he knows Tom will try to win the maximum number of
ipoints each time. Jim must determine the maximum payoff for each
ioﬂ his cholces. List the maximum payofz below the column for each
'choice. For which ﬂhoice is the maximum payoff the lesser? The
lesser of these maxima occurs when Jim wrifes “B“ and is equal
- £0:; 5 The'maximum nuiiber’ of'ﬁgints Tom -can win when Jim writes
'4» B“ is smaller than ‘the maximum. payoff when Jim writes T Jim-
WLll never lose more thari- 5 points if he writes “B“‘ '
To summarize, we have the following°
. The min fmam _payoff: £or Pom -Af he calls

3
B -

g ( A is 5". ’ . ke o
< (b) B is X,
Ik%fA The greate ‘of these minimum .payoffs is 5. -

The maximum.number of points Jin could lose if he calls
(a) A is 6. .

(b)*B 18 5. - , :

The lesser of tnese maximum payoffs is 5.

‘\In this game notice that the greater of the minimum payoff's
to Tom 1s equal to the lesser of the. maximum losses of Jim. When
this ..appens, we say that the game has a saddle—point.

 Think of the shape of 2 saddle for'a horse, The lines running
from front- to back.dip down in the middle, or we could say ‘they.
have a minimum point,. The 1ines going across the saddle from left
to right rise up to a naximum - :
point in the middle. . The great-
estrof the minimum points and the
1east of the maximum points are
~ both at the center of the saddle.
Th;s'is the point we call the

[
M . ’
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-the.Jadd;gfpoint When..», ganie has a.saddle point the £Wo. choices""
ﬁfgiéé the saddle point number are the best choices, and the i .
:gstrategy for each boy is to chooae that letter all of the time.};x
,fdre the best strategy for ‘Tom. 18 always to write “B“ This .

If Jim followed this strategy

!
. l

a
R ‘
té the values given in the matrices b’

I .

: ‘ s 7% - - O
Tom*s I N SRR
chotee B ls 2 pogien
(a) A’x ) . o "g:“';-. TR 0
] b) B2 ‘ : o o
e \ 1 .= ¢
'#} Which.is\\he greater, of these minimum payoffs '
$ What is the maximum number of points Jim ccu1d 1ose if'he
g " chooses v : e .
/ (a) Ao ' o o R
) (b) B—__F__m . . 2 . ‘ .
':fi. Which is the lesser of these maximum payoffs° e -,
5 Does the lesser of the maximnm payoffs eqnal the greater of
‘ the minimum payoffs? Does this game have & saddle—poinb”
6 tht 18 the best strategy for ‘each boy,, .
. - xﬂlg | ) .




Jim's cholce - :
A B ’

5 N ’ ‘
6 T

l.~ What is the greater of the minimum payoffs Tom can win.,

2.“ what ds the 1esser of the maximum payoffs Fim can 1ose?

3. Does the 1esser of the. maximum payoffs equal the greater

_— of the minimim: payof:s? Does this game have a saddle-point?
:4_ What is the best strategy for each boy? -

\

’ -

G.f _ o Jim‘s* choice ' ';, )
| CON AL E e
o oemst A LB L X e
- u?oice. '_ %V;'jigj}é,Y: Lo '\. T s

foa
TSR

1.KOWhat ls the greaﬁsf of tﬁeiminimum~§ayoﬂfﬁ Tom Can—win?
2. What is the iesser pf the maximum payoff Jim can-lose?

. 3. Does the 1esser of the maximum payoffs equal to the greater

of the minimum payoffs? Does this game have a saddle-point?
; X

L4

g, What is the best strategy for each boy. , ‘ R

D. In thils game, each boy can write "A" “B“‘ or ."C%. < The
payoff tells how many pOints Fom receives for each combin-

-

ation. ) k

Jimts cholce

A. B C.
. Tom!s A 10| 2 | 8 . )
' ) cholce ~ . T, -
v B T 1679
' c- 1 | v o3 g
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'f:_j;i; What 1s the minimum humber of Points Tom would win 1 he

fchooses
(a) “A"Z?_ “‘ A/; . ‘ . ) . . o
(b) :iiBil? o /,,; ) . . :

S LTIy ' .

A N 1(0) "c"r) ”l’\ N , \\ :

2. Wtieh is ‘he greates;of these minimum payoffs°
B What {s the ‘maximuin numben of points Jim will lose if he

chooses i o *
¥, wWhich is the least.of these ‘maximi payoffso . ; ;;;'*s

‘5» Does. the least of the maximum: payoffs equal the greatestof the
minimumlpayoffs? Does- thio game have saddle-point°

6. Vhat is the best strategy for'each boy o - - o
. [ - T
-2, Business Strategy X / o . ‘ N S
N . / \\ - . oo .
“ These same methods can be used for making decisions in ,

business. The prinary concern pf a business is how to-make a good
profit In other words, each decision\should result in a payoff
which brings the maximmuin (that 48, greatest) possible profit
mﬂwErom a payuoff matrix a business man could find the best strategy
to follow. It is more oifficult to set up a pay-off matrix for

‘a2 business decision. Before you can do this you st 1earn some:

hisinéss terms. .

- T~
f N .
a - N \\
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L] + Fat
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‘James oWhe a bicycle shop. He buys & Bfﬁe'for $%0 and
on';$§5y The difference between the selling price and

EREEY

« - < .

thefmargin_ - o
margin ; selling price = cost L
- v ’ ) . \ g g

He must pay
These are called operating

TR

The difference between ‘the margin and. tne operating

e ‘:u—%-“‘
5% ‘a8 pense is the profit o u> e vl
%A IR T we s RS » A S Ty . “ ~,,/* "!'K
T Y . ﬁe’/‘. 5 i ’/
: profit = margin w~expensesm 4/ o l
P e

. ~»--—1

misprofi'cé R U
: What would happen if the expenses were greater than the

: margin" If tHis happens M James will 1ose money. Mr. James
;s~would have & negat*ve profit It Mn. James* expenses had equaled

$30 for that bike what would, be the profit? T
, , AN
L Example‘ . o S w0
e * \“‘9\1 »‘mwwu, ‘M'm. N '465"’ S
In & dime store, merchandise wﬁiéh”cost“ $§OQ> wag -
 sold for 45p5. What isthe mavgtnt o . '
- ' sellingsprice $525° S
‘ L il ot $ho0- - o -
S IR SerEn WIZ5 - o L
R Ifxthe operating ‘&Xpenses. equaled $80; what 1s'the
..)‘ “s;' . N . \pr?fito ’» . WQ“NPA‘"".A"‘— s W~ . !" . , ' :;:? ’-t‘
' ]gl - | margin $125 , | T - -
L - éxpenses: .80 : :
“ik}jflfi ‘ " profit $ 45 0 - ' -

Work “thie: foIlo\ang probiems-l
. Problems: Find the quantity asked for in each of the follquwm

ihg problems. |’ .o ' y

hd .
- - - ¥
\ " ) 4
B ~ !
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Exercises T2 )

¥ -

Iume Store

. '*‘d"In a dime store, merchandise costiﬁ% $250 ~and was sold for
‘ ' ' - '3;_.: 353“'0 ' M ? K - d
. C . What is the Az pgin? - - _ N

o '1heaoperating expenses totaled %60,
e 2. Whit.Ls the profit o p

S T‘ 3. If the operating expenses are %100,_what is the i
R J ‘ prOfit‘? ; - , . - '/ < o
: The ice cream supply for oné day is bought for $25 and sold~."f
. to customers for $48. 3 . / . oo T
' 4, What i§ the qgrgine s T o
The gas for the trucg/costs &u‘oo‘yper day. ;\;i

Jhe license costs 5@% per day. /- o

The! insurance on tée truck costs *FQ# per day. -

Rep airs and upkeep for tHe truck o8t 5Q¢ per day.
5. What is the total operaﬁing expense per’day°

- ‘\ .Gs What is thé Droiit p?r day? C \

) 1n dhe ek | e

" 720 tickets were. sold at. 25¢ axpiete. "
400 tickets were sold at ;Qﬂ aplece.

7. Vhat is the total price pald £or all of the ticksts?

< -

Rent (per week) // $ 707 .
Rent for £1lms, , 450 T

) IWages for one week /l $120 Ly
Electricity (per week) $ 30 , ' ‘-

8. What is the total operating expénse for ohe week?
9: What is‘the profit for one week?

Y
et
~1

1
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The gas station sold 780 gallans of gas atp'ead‘fpér
gallon one day e ;
10, What is tne total selling,priceO

11, If the gas. cost:. léﬂ' per gallon, what is the

. 4‘\ ': total margin” . .
S N -8 ‘The operating costs total $21¥,.50, ;What is the
S | proTLLy ¢ o . '

e 15. At a»later date, the s;@tiq operator~sold only' ”&=
- 350 gallons of gas bu h ad the 3$§m§ .operating

J‘
<

't
‘ . " costs. Find the pro f36, . o
:.'-’:,‘- 7“ N ) - . :g’ x ﬂ,\&(’ 13 s . » ‘ :l'
S - e T RS- SN
=3 PaY-Off Matnim for 2 Business Decis_on‘\ - o

A véndor At - thew€botba11 game ‘can sell either coffee or .
popcorn (but not both ) In warm weather the vendor can Sell
»300'cups of coffee. If coffes costs’ 5" and sells for 1o
‘ what. is the margin per . cup? ‘What is theonargin on ;00 cups cf

coffee° In warm weather the véndor ‘can sell 400 boxes .of
,~ popcorn at 10¢ per box. What is the totul margin‘if each
* box costs 5¢% o :
The following matrix will show the profits. (assume that
there ere no operating. expenses ) Think of, the weather as the
o vendor's opponent in a game and imagine that the’ weather is try-

%
*’Q) -
N g

‘“:A‘ing to defeat the vendor

‘

' . . Weather
) warm cold - - -~ 5
vendorﬁs coffee |_#15 B ‘ s .
order . . : .
: popcorn|’ $20 ‘

> . - :, o a

3”@-\./”%\:[‘1»"\«——” TR APHUNG VRIS BN ﬁ )
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_If the vendor 8ells coffee in cold weather, he sells 700
‘,}cups of coffee; - o ’
. ‘What would be the margin? What is thle*p‘ri:‘if.":'!.t"7
. ;The vendor will 861 600 boxes of popcorn if it 1is cold
'xkoutside. : : . ) )
“ Wpat 1is the margin? What is ‘e profit9

Place these numbers in tke correct boxes.‘ The. vendor wants
~to make the most profit that is possible. Since he cannot ’
be sure. of the weather, ‘he- must determine his best strategy <L
’ Is there a saddle-point° What is h 8. best strategy9 You ' B

should have found,that the vendor should always‘order popcorn.A:’\

o He Wil always make at 1léast $20 o _ .. R
‘.?~:“ ',L'i - -

TR AR T
5
EA)
1,
.

N R """;

o~y
<

£

. Itfshould be emphasized that this is all on the: assumption .
that the weatner iS«completely unreliable. For instance, if the g
vendor cbuld be sure tbat there would‘be mBre cold days than hot
days» he :should ‘always. serve. coffée;, We make‘the assumption.for

,,,,,
1

this problem that. there 18 no such assurance about the weather."

= ) R J— .

P , : B, ’ﬂﬁ

P

e D

4,

AR N
¥ Exeroises 7’3 T o S
T N .
g .

L Set up a pay~off matrix for the following vendor and determine
o hig best strategy. “ e e RN
e i v T
The vendor can sell either hotr dogs, sodatpopfgl ice'cream. - s
Which -one should he se112 s . T

.2

]

‘ oo SeTidng .o P
7~ " hot dey - 150 15¢‘each 1 edch T g, 00 :'
Hot Dogs*ﬁ , o # ¥ ' $ )
cold day - 250 15¢ each 11¢ -each ‘ $2.00. a
G T hot day = ‘350~——lqé.eacn . 6f each L $2.00

Boda, P°P. cold day - 275 10¢ each 6# gach

2

“—$2~eoef S

L. hot’day - 5Q0- - 10# easch *5# each ‘ $2.00 ,‘ h

Ice Cream. kA aa ‘ '
¢01d day - 180 10¢ each ~ 5¢ each ~$2.00

g
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" - * » - T

. Enter the profit for each.item in the correct box of the éfll?ﬁf

J"

%

© 0 Wedther.. j‘“\;”;

Y

Hot . -Cold ST

>

Suppose 2 man 18 selling ice cream and coffee at the.fair. ﬁHiS‘
business is affected by the weather, which 1s somqtimes hot ©
and éometimes cold. His: opponent is the weather.* He has 0 d’
cold and 1ce cream sells we;l, 1f the weathen is hot The .
venuor Mmist. find the dest. gtz tegy in order to make the maximum
profit. . - ?“ ’ S B _
Assume the eoffee cost84)4 cents a GUp and sefl;"%"
10° :cents. The- ice ‘cpeam: cgsts 5 cents a bar and sells for
10 ¢énts: On @ hot day theé véndor will gel1l’ 60 jde cream
bars and. » 200: cups ©of coffee, If’his operating expense 15
. $3 pér day vhat is his profit on a. hot day? On a ¢old daj
“the: vendor sells 500 cups of coffee and 200 ice cream bars. ;

. ¥Wnat, 18 his nrofit oh a goid day? . . . -

N
3,

"
3

ol 1‘The following kind of chart may help yeu find the profik..

i

Tee- Cream - Coffee., ’ L

e

..§616; on cold day

.. Total Recelpts

1 Orderéd for cord day . -
fi‘**”**weWﬂTotalmcosb§i

¢
s

] Margin =~ .,
. _Operating expense
Proiit_ 2
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Assume ’chat the vendor cannot store any"hing overnight 80.
anything .Lef’é a‘b the end of bhe day is' thrown away .E‘or
.example, if the vendor orders for a, coId day aryi it is )'xot, ‘
he will 8ell. the 200 ice: cream bars and only 200 c}\pq o
.of coffee! 300 - cups of céfﬁee would be wasted S
"‘here are 3 therefore, ‘b*u'ee other charts necessary

» 1. When he orders i‘or a hot day and 11: hot; .

2, When he orders. for,a. hbt day and i{:‘ is co’ld
a., When he orders for a cold day and it is hot‘

L

i

Fill in ‘the i‘ollo'.ging pay—off matrix (Make yourf owﬁ)

. 1' e i

- v Weather LT .
!’. “ o.t e N AW:',,, Y. - = “:.
. - S X } -(‘: 7] s ﬂ‘: ‘ .:;\.L — ) - ) ;. .
. ordered fors Hovday o - o obo e rRR
‘ Cold dayix,. L .3{ B

a saddle-point" When there is no saddle-point N a single cali is
2 ot _the best strategy - order to find Lbhe best: stfategy you mus%
L ., Kriow soething gbout the' laws of chance. You will study the laws//
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